Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov, A.A., Leonov, S.B. and Sorokin, M.M. (1982) Chemistry of Flotation Systems. Nedra, Moscow (in Russian).

    Google Scholar 

  • Avvakumov, E.G. (1986) Mechanical Methods of Chemical Processes Activation. Nauka, Novosibirsk (in Russian).

    Google Scholar 

  • Baláž, P., Bálintová, M., Bastl, Z., Briančin, J. and Šepelák, V. (1997) Characterization and reactivity of zinc sulphide prepared by mechanochemical synthesis. Solid State Ionics 101–103, 45–51.

    Article  Google Scholar 

  • Baláž, P. (2000) Extractive Metallurgy of Activated Minerals. Elsevier, Amsterdam.

    Google Scholar 

  • Baláž, P., Takacs, L., Jiang, J.Z., Godočíková, E., Luxová, M. and Bastl, Z. (2002a) Preparation of Cu/FeS nanoparticles by mechanochemical reduction of copper sulphide. Metallic Materials 40, 268–280.

    Google Scholar 

  • Baláž, P., Valko, M., Boldižárová, E. and Briančin, J. (2002b) Properties and reactivity of Mn-doped ZnS nanoparticles. Materials Letters 52, 188–191.

    Google Scholar 

  • Baláž, P., Aláčová, A., Godočíková, E., Kováč, J., Škorvánek, I. and Jiang, J.Z. (2004a) Study of magnetic properties of nanopowders prepared by pyrite-troilite transformation via high-energy milling. Czechoslovak Journal of Physics, Supplement D 54, D197–D200.

    Article  Google Scholar 

  • Baláž, P., Godočíková, E., Kril’ová, L., Lobotka, P. and Gock, E. (2004b) Preparation of nanocrystalline materials by high-energy milling. Materials Science and Engineering A 386, 442–446.

    Google Scholar 

  • Bancroft, G.M. (1973) Mössbauer Spectroscopy, an Introduction for Inorganic Chemists and Geochemists. McGraw Hill, London.

    Google Scholar 

  • Beran, A., Voll, D. and Schneider, D. (2004) In: A. Beran, E. Libowitzky (Eds.) EMU Notes in Mineralogy, Vol. 6, pp. 189–226.

    Google Scholar 

  • Berčík, J. (1977) Physical and Physico-Analytical Methods. Alfa, Bratislava (in Slovak).

    Google Scholar 

  • Bland, J. (2002) A Mössbauer Spectroscopy and Magnetometry Study of Magnetic Multilayers and Oxides. PhD. Thesis, University of Liverpool.

    Google Scholar 

  • Boiteux, Y.P. (1986) Surface Characterization and Manipulation of Si 3N4 and SiC Powders. M.Sc. Thesis, Berkeley.

    Google Scholar 

  • Boldyrev, V.V. and Meyer, K. (Eds.) (1973) Festkörperchemie. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (in German).

    Google Scholar 

  • Boldyrev, A.I. (1976) Infrared Spectra of Minerals. Nedra, Moscow (in Russian).

    Google Scholar 

  • Boldyrev, V.V. (1983) Experimental Methods in Mechanochemistry of Inorganic Solids. Nauka, Novosibirsk (in Russian).

    Google Scholar 

  • Borchert, H., Shevchenko, E.V., Robert, A., Mekis, I., Kornowski, A., Grübel, G. and Weller, H. (2005) Determination of nanocrystalline sizes: a comparison of TEM, SAXS and XRD studies of highly monodisperse CoPt3 particles. Langmuir 21, 1931–1936.

    Article  CAS  Google Scholar 

  • Briggs, D. and Seah, M.P. (1983) Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. Wiley, Chichester.

    Google Scholar 

  • Cabri, L.J. and Goodman, R.H. (1970) Mössbauer spectra of some copper-iron sulfides. Geochimija 5, 636–639.

    Google Scholar 

  • Campbell, S.J. and Kaczmarek, W.A. (1969) Mössbauer effect studies of materials prepared by mechanochemical methods. In: G.J. Long and F. Grandjean (Eds.) Mössbauer Spectroscopy Applied to Magnetism and Materials Science. Plenum Press, New York, Vol. 2, pp. 273–330.

    Google Scholar 

  • Chodakov, G.S. (1972) Physics of Grinding. Nauka, Moscow (in Russian).

    Google Scholar 

  • Duyckaerts, G. (1959) The infrared analysis of solid substances-a review. Analyst 84, 201–214.

    Article  CAS  Google Scholar 

  • Eggleston, C.M. and Hochella Jr., M.F. (1990) Scanning tunnelling microscopy of sulfide surfaces. Geochimica et Cosmochimica Acta 54, 1511–1517.

    Article  CAS  Google Scholar 

  • Farmer, V.C. Ed. (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London.

    Google Scholar 

  • Gleiter, H. (1989) Nanocrystalline materials. Progress in Materials Science 33, 223–315.

    Article  CAS  Google Scholar 

  • Godočíková, E., Baláž, P., Bastl, Z. and Brabec, L. (2002) Spectroscopic study of the surface oxidation of mechanically activated sulphides. Applied Surface Science 200, 36–47.

    Article  Google Scholar 

  • Greenwood, N.N. and Whitfield, H.J. (1968) Mössbauer effect studies on cubanite (CuFe2S3) and related iron sulfides. Journal of Chemical Society A 1697–1699.

    Google Scholar 

  • Greenwood, N.N. and Gibb, T.C. (1971) Mössbauer Spectroscopy. Chapman and Hall, London.

    Google Scholar 

  • Grigson, C.W.B. and Barton, E. (1967) The development of the face-centred cubic interface functions as crystals grow. Journal of Applied Physics 18, 175–184.

    CAS  Google Scholar 

  • Hedvig, G. and Zentai, G. (1969) Microwave Study of Chemical Structures and Reactions. Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Heinicke, G. (1984) Tribochemistry. Akademie-Verlag, Berlin.

    Google Scholar 

  • Henderson, B. (1972) Defects in Crystalline Solids. Edward Arnold, London.

    Google Scholar 

  • Hennig, H.P., Ebert, I., Tkáčová, K., Jost, H., Pielert, L. and Števulová, N. (1984) Mechanisch induzierte Strukturdefekte und deren Einfluss auf die Reaktivität von MgO. Folia Montana, extraordinary number, 380–388.

    Google Scholar 

  • Hlavay, J. (1978) Die Untersuchung fester pulverförmiger Materialien mittels Infrarotspektroskopie. In: Z. Juhász (Ed.) Untersuchungsmethoden zur Charakterisierung mechanisch aktivierter Festkörper. Közlekedési Dokumentációs Vállalat, Budapest, pp. 128–137 (in German).

    Google Scholar 

  • Hlavay, J. and Inczédy, I. (1979) Sources of the error of quantitative determination of the solid crystalline minerals by infrared spectroscopy. Acta Chimica Academiae Scientiarum Hungarical 102, 11–18.

    CAS  Google Scholar 

  • http://www.physik.uni-jena.de http://www.physik.uni-jena.de

  • http://www.rz-berlin.mpg.de

  • Imbert, P., Gerard, A. and Wintenberger, M. (1963) Étude de sulfure, arséniosulfure et arseniure de fer naturels par effect Mössbauer Comptes Rendus de l’Academie des sciences 256, 4391–4393.

    CAS  Google Scholar 

  • Johan, Z., Rotter, R. and Slánský, E. (1970) X-ray Analysis of Materials. SNTL, Prague (in Czech).

    Google Scholar 

  • Juhász, Z. (Ed.) (1978) Untersuchungsmethoden zur Charakterisierung mechanisch aktivierter Festkörper. Közlekedési Dokumentációs Vállalat, Budapest (in German).

    Google Scholar 

  • Juhász, A.Z. and Opoczky, L. (1990) Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles. Ellis Horwood Limited, Chichester.

    Google Scholar 

  • Kakazej, N.G. (1974) Defective structure of fine periclase particles. Soviet Powder Metallurgy and Metal Ceramics 13, 322–325.

    Article  Google Scholar 

  • Klugg, H.P. and Alexander, L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. John Willey and Sons, New York.

    Google Scholar 

  • Koloskova, N.G. (1962) Fizika Tverdogo Tela 4, 3129.

    CAS  Google Scholar 

  • Koningsberger, D.C. and Prins, R. (1988) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. John Wiley and Sons, New York.

    Google Scholar 

  • Kössler, I. (1970) Quantitative Infrared Spectroscopy. SNTL, Prague (in Czech).

    Google Scholar 

  • Köchendorfer, A. (1944) Zeitschrift für Kristallographie 105, 393–398.

    Google Scholar 

  • Kulebakin, V.G. (1983) Transformations of Sulphides by Activation. Nauka, Novosibirsk (inRussian).

    Google Scholar 

  • Liese, H. (1974) Infrared absorption (435 to 250 cm-1) and ultraviolet emission analyses of selected sulfides and sulfosalts: a correlative study. Applied Spectroscopy 28, 135–139.

    Article  CAS  Google Scholar 

  • Ljudvig, D. and Vudberi, G. (1964) Electron Spin Resonance. Mir, Moscow (in Russian).

    Google Scholar 

  • Ludwig, G. (1978) Bestimmung von Kristalitgrössen, Gitterfehlordnung und Amorphisierungserscheinungen durch Röntgenuntersuchungen. In: Z. Juhász (Ed.) Untersuchungsmethoden zur Characterisierung mechanisch aktivierter Festkörper. Közlekedesi Dokumentációs Vállalat, Budapest, pp. 113–127 (in German).

    Google Scholar 

  • Maeder, G. (1986) X-ray diffraction and stress measurements. Chemica Scripta A 26, 23–31.

    Google Scholar 

  • Malševa, T.V. (1975) Mössbauer Effect in Geochemistry and Cosmochemistry. Nauka, Moscow (in Russian).

    Google Scholar 

  • Marfunin, A.S. and Mkrtčjan, A.R. (1967) Mössbauer spectra Fe57 of sulphidic minerals. Geochimija 10, 1094–1103.

    Google Scholar 

  • Molčanov, V.I. and Jusupov, T.S. (1981) Physical and Chemical Properties of Fine Ground Minerals. Nedra, Moscow (in Russian).

    Google Scholar 

  • Molčanov, V.I., Selezneva, O.G. and Žirnov, E.N. (1988) Activation of Minerals by Grinding. Nedra, Moscow (in Russian).

    Google Scholar 

  • Mössbauer, R.L. (1958) Kernresonanz fluoreszenz von Gammastrahlung in Ir191. Zeitschrift für Physik 151, 124–143.

    Article  Google Scholar 

  • Nakamoto, K. (1978) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York.

    Google Scholar 

  • Nanda, J., Kuruvilla, B.A. and Sarma, D.D. (1999) Photoelectron spectroscopic study of CdS nanocrystallites. Physical Reviews B 59, 7473–7479.

    Article  CAS  Google Scholar 

  • Nanda, J., Sapra, S. and Sarma, D.D. (2000) Size selected zinc sulfide nanocrystallites: synthesis, structure and optical studies. Chemistry of Materials 12, 1018–1024.

    Article  CAS  Google Scholar 

  • Nefedov, V.I. (1984) XPS Spectroscopy of Chemical Compounds. Chimija, Moscow (in Russian).

    Google Scholar 

  • O’Connor, D.J., Sexton, B.A. and Smart, R. (Eds.) (1992) Surface Analysis Methods in Materials Science. Springer, Heidlberg.

    Google Scholar 

  • Ohlberg, S.M. and Strickler, D.W. (1962) Determination of percent crystallinity of partly devitrified glass by X-ray diffraction. Journal of American Ceramic Society 45, 170–171.

    Article  CAS  Google Scholar 

  • Patzak, I. (1966) Berichte des Deutsches keramische Gesselschaft 43, 77–80.

    Google Scholar 

  • Pilbrow, J.R. (1990) Transition Ion Electron Paramagnetic Resonance. Clarendon Press, Oxford.

    Google Scholar 

  • Poole, CH.P. and Owens, F.J. (2003) Introduction to Nanotechnology. Wiley-Interscience, New Jersey.

    Google Scholar 

  • Pourgahramani, P. and Baláž, P. (2008) Structural changes and characterizations in the powder materials obtained from milling processes. In: M. Yekeler (Ed.) Powder Technology and Characterization. Trivandrum, Kerala, pp. 217–250.

    Google Scholar 

  • Pourgahramani, P. and Forssberg, E. (2006) Microstructure characterization of mechanically activated hematite using XRD line broadening. International Journal of Mineral Processing 79, 106–119.

    Article  Google Scholar 

  • Pugh, R.J. and Bergström, L. (1986) Surface and solution chemistry studies on galena suspensions. Colloids and Surfaces 19, 1–20.

    Article  CAS  Google Scholar 

  • Rákoš, M. (1988) Radiospectroscopical Methods. Alfa, Bratislava (in Slovak).

    Google Scholar 

  • Rockenberger, J., Tröger, L., Kornowski, A., Vossmeyer, T., Eychmüller, A., Feldhaus, J. and Weller, H. (1997) EXAFS studies on the size dependence of structural and dynamic properties of CdS particles. Journal of Physical Chemistry B 10, 2691–2701.

    Article  Google Scholar 

  • Scott, S.D. (1971) Mössbauer spectra of synthesis iron-bearing sphalerite. Canadian Mineralogist 10, 882–885.

    CAS  Google Scholar 

  • Scherrer, P. (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Götingen, Mathematisch-Physikalische Klasse, 2, 96–100.

    Google Scholar 

  • Siegbahn, K., Nordling, C. and Johansson, G. (1969) ESCA: Applied to Free Molecules. North-Holland, Amsterdam.

    Google Scholar 

  • Temperley, A.A. and Lefevre, H.W. (1966) The Mössbauer effect in marcasite structure iron compounds. Journal of Physics and Chemistry of Solids 27, 85–92.

    Article  CAS  Google Scholar 

  • Tkáčová, K. (1989) Mechanical Activation of Minerals. Elsevier, Amsterdam.

    Google Scholar 

  • Ungar, T. (2004) Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia 51, 777–781.

    Article  CAS  Google Scholar 

  • Vaughan, D.J. and Burns, R.G. (1972) Mössbauer spectroscopy and bonding in sulfide minerals containing four-coordinated iron. In: Proc. 24th International Geological Congress, Section 14, Montreal, pp. 156–167.

    Google Scholar 

  • Vaughan, D.J. and Craig, J.R. (1978) Mineral Chemistry of Metal Sulfides. Cambridge University Press, Cambridge.

    Google Scholar 

  • Vlasov, M.V. and Kakazej, N.G. (1979) Electron Spin Resonance in Mechanically Disordered Solids. Naukova dumka, Kijev (in Russian).

    Google Scholar 

  • Wang, Z.L. (2000) Transmission electron microscopy and spectroscopy of nanoparticles. In: Z.L. Wang (Ed.) Characterization of Nanophase Materials. Wiley-VCh, Weinheim, pp. 37–80.

    Google Scholar 

  • Warren, B.E. and Averbach, B.L. (1950) The effect of cold-work distortion on X-ray patterns. Journal of Applied Physics 21, 595–599.

    Article  CAS  Google Scholar 

  • Wertz, J.E. and Bolton, J.R. (1972) Electron Spin Resonance. McGraw Hill, New York.

    Google Scholar 

  • Williamson, G.K. and Hall, W.H. (1953) X-ray broadening from filled aluminium and wolfram. Acta Metallurgica 1, 22–31.

    Article  CAS  Google Scholar 

  • Wogelius, R.A. and Vaughan, D.J. (2000) Analytical, experimental and computational methods in environmental mineralogy. In: D.J. Vaughan and R.A. Wogelius (Eds.) EMU Notes in Mineralogy. Eötwös University Press, Budapest, Vol. 2, pp. 7–87.

    Google Scholar 

  • Zanchet, D., Hall, B.D. and Ugarte, D. (2000) X-ray characterization of nanoparticles. In: Z.L. Wang (Ed.) Characterization of Nanophase Materials. Wiley-VCH, Weinheim, pp. 13–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baláž, P. (2008). Selected Identification Methods. In: Mechanochemistry in Nanoscience and Minerals Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74855-7_3

Download citation

Publish with us

Policies and ethics