Skip to main content

Presynaptic Neuropeptide Receptors

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 184))

Presynaptic receptors for four families of neuropeptides will be discussed: opioids, neuropeptide Y, adrenocorticotropic hormone (ACTH), and orexins. Presynaptic receptors for the opioids (µ, δ, κ, and ORL1) and neuropeptide Y (Y2) inhibit transmitter release from a variety of neurones, both in the peripheral and central nervous systems. These receptors, which were also identified in human tissue, are coupled to Gi/o proteins and block voltage-dependent Ca2+ channels, activate voltage-dependent K+ channels, and/or interfere with the vesicle release machinery. Presynaptic receptors for ACTH (MC2 receptors) have so far been identified almost exclusively in cardiovascular tissues from rabbits, where they facilitate noradrenaline release; they are coupled to Gs protein and act via stimulation of adenylyl cyclase. Presynaptic receptors for orexins (most probably OX2 receptors) have so far almost exclusively been identified in the rat and mouse brain, where they facilitate the release of glutamate and γ-aminobutyric acid (GABA); they are most probably linked to Gq and directly activate the vesicle release machinery or act via a transduction mechanism upstream of the release process. Agonists and antagonists at opioid receptors owe at least part of their therapeutic effects to actions on presynaptic receptors. Therapeutic drugs targeting neuropeptide Y and orexin receptors and presynaptic ACTH receptors so far are not available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsson C (2000) Neuropeptide Y1- and Y2-receptor-mediated cardiovascular effects in the anaesthetized guinea pig, rat, and rabbit. J Cardiovasc Pharmacol 36:451-8

    PubMed  CAS  Google Scholar 

  • Ackley MA, Hurley RW, Virnich DE et al (2001) A cellular mechanism for the antinociceptive effect of a kappa opioid receptor agonist. Pain 91:377-88

    PubMed  CAS  Google Scholar 

  • Aimone LD, Yaksh TL (1989) Opioid modulation of capsaicin-evoked release of substance P from rat spinal cord in vivo. Peptides 10:1127-31

    PubMed  CAS  Google Scholar 

  • Alexander SPH, Mathie A, Peters JA (2006) Guide to receptors and channels, 2nd edition. Br J Pharmacol 147 (Suppl 3):S1-S180

    PubMed  CAS  Google Scholar 

  • Allen JM, Adrian TE, Tatemoto K et al (1982) Two novel related peptides, neuropeptide Y (NPY) and peptide YY (PYY) inhibit the contraction of the electrically stimulated mouse vas deferens. Neuropeptides 3:71-7

    PubMed  CAS  Google Scholar 

  • Allgaier C, Daschmann B, Sieverling J et al (1989) Presynaptic k-opioid receptors on noradrenergic nerve terminals couple to G-proteins and interact with α2 -adrenoceptors. J Neurochem 53:1629-35

    PubMed  CAS  Google Scholar 

  • Averbeck B, Reeh PW, Michaelis M (2001) Modulation of CGRP and PGE2 release from isolated rat skin by alpha-adrenoceptors and kappa-opioid-receptors. Neuroreport 12:2097-2100

    PubMed  CAS  Google Scholar 

  • Barral J, Mendoza E, Galarraga E et al (2003) The presynaptic modulation of corticostriatal afferents by µ-opioids is mediated by K+ conductances. Eur J Pharmacol 462:91-8

    PubMed  CAS  Google Scholar 

  • Beani L, Bianchi C, Siniscalchi A (1982) The effect of naloxone on opioid-induced inhibition and facilitation of acetylcholine release in brain slices. Br J Pharmacol 76:393-401

    PubMed  CAS  Google Scholar 

  • Berger B, Rothmaier AK, Wedekind F et al (2006) Presynaptic opioid receptors on noradrenergic and serotonergic neurons in the human as compared to the rat neocortex. Br J Pharmacol 148:795-806

    PubMed  CAS  Google Scholar 

  • Bergevin A, Girardot D, Bourque MJ et al (2002) Presynaptic µ-opioid receptors regulate a late step of the secretory process in rat ventral tegmental area GABAergic neurons. Neuropharmacology 42:1065-78

    PubMed  CAS  Google Scholar 

  • Blakemore LJ, Levenson CW, Trombley PQ (2006) Neuropeptide Y modulates excitatory synaptic transmission in the olfactory bulb. Neuroscience 138:663-74

    PubMed  CAS  Google Scholar 

  • Bloch B, Bugnon C, Fellmann D, Lenys D, Gouget A (1979) Neurons of the rat hypothalamus reactive with antisera against endorphins, ACTH, MSH and ß-LPH. Cell Tissue Res 204:1-15

    PubMed  CAS  Google Scholar 

  • Boehm S, Kubista H (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54:43-99

    PubMed  CAS  Google Scholar 

  • Bouryi VA, Lewis DI (2004) Enkephalinergic inhibition of raphe pallidus inputs to rat hypoglossal motoneurones in vitro. Neuroscience 129:55-64

    PubMed  CAS  Google Scholar 

  • Brain SD, Cox HM (2006) Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br J Pharmacol 147:S202-S211

    PubMed  CAS  Google Scholar 

  • Browning KN, Kalyuzhny AE, Travagli RA (2002) Opioid peptides inhibit excitatory but not inhibitory synaptic transmission in the rat dorsal motor nucleus of the vagus. J Neurosci 22:2998-3004

    PubMed  CAS  Google Scholar 

  • Bugnot C, Bloch B, Lenys D, Fellmann D (1979) Infundibular neurons of the human hypothalamus simultaneously reactive with antisera against endorphins, ACTH, MSH, and beta-LPH. Cell Tissue Res 199:177-96

    Google Scholar 

  • Burlet S, Tyler CJ, Leonard CS (2002) Direct and indirect excitation of laterodorsal temental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J Neurosci 22: 2862-72

    PubMed  CAS  Google Scholar 

  • Capogna M, Gahwiler BH, Thompson SM (1993) Mechanism of mu-opioid receptor-mediated presynaptic inhibition in the rat hippocampus in vitro. J Physiol 470:539-58

    PubMed  CAS  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437-51

    PubMed  CAS  Google Scholar 

  • Cherubini E, North RA (1985) Mu and kappa opioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci 82:1860-3

    PubMed  CAS  Google Scholar 

  • Collip JB, Anderson EM, Thomson DL (1933) The adrenotropic hormone of the anterior pituitary lobe. Lancet 222:347-8

    Google Scholar 

  • Cosentino M, Marino F, De Ponti F et al (1995) Tonic modulation of neurotransmitter release in the guinea-pig myenteric plexus: effect of mu and kappa opioid receptor blockade and of chronic sympathetic denervation. Neurosci Lett 194:185-8

    PubMed  CAS  Google Scholar 

  • Costa M, Majewski H (1988) Facilitation of noradrenaline release from sympathetic nerves through activation of ACTH receptors, ß-adrenoceptors and angiotensin II receptors. Br J Pharmacol 95:993-1001

    PubMed  CAS  Google Scholar 

  • Davis SF, Williams KW, Xu W (2003) Selective enhancement of synaptic inhibition by hypocretin (orexin) in rat vagal motor neurons: implications for autonomic regulation. J Neurosci 23: 3844-54

    PubMed  CAS  Google Scholar 

  • de Lecea L, Kilduff T, Peyron C et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci 95:322-7

    PubMed  CAS  Google Scholar 

  • Emmerson PJ, Miller RJ (1999) Pre- and postsynaptic actions of opioid and orphan opioid agonists in the rat arcuate nucleus and ventromedial hypothalamus in vitro. J Physiol 517:431-45

    PubMed  CAS  Google Scholar 

  • Endo K, Yawo H (2000) mu-Opioid receptor inhibits N-type Ca2+ channels in the calyx presynaptic terminal of the embryonic chick ciliary ganglion. J Physiol 524:769-81

    PubMed  CAS  Google Scholar 

  • Feuerstein TJ, Gleichauf O, Peckys D et al (1996) Opioid receptor-mediated control of acetylcholine release in human neocortex tissue. Naunyn-Schmiedeberg’s Arch Pharmacol 354:586-92

    CAS  Google Scholar 

  • Finnegan TF, Chen SR, Pan HL (2005) Effect of the µ opioid on excitatory and inhibitory synaptic inputs to periqueductal gray-projecting neurons in the amygdala. J Pharmacol Exp Ther 312:441-8

    PubMed  CAS  Google Scholar 

  • Finnegan TF, Chen SR, Pan HL (2006) Mu opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels. J Neurophysiol 95:2032-41

    PubMed  CAS  Google Scholar 

  • Fu LY, Acuna-Goycolea C, van den Pol (2004) Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J Neurosci 24:8741-51

    PubMed  CAS  Google Scholar 

  • Gannon RL, Terrian DM (1991) U-50,488H inhibits dynorphin and glutamate release from guinea pig hippocampal mossy fiber terminals. Brain Res 548:242-7

    PubMed  CAS  Google Scholar 

  • Gantz I, Fong JM (2003) The melanocortin system. Am J Physiol Endocrinol Metabol 284:E468-E474

    CAS  Google Scholar 

  • Glatzer NR, Smith BN (2005) Modulation of synaptic transmission in the rat nucleus of the solitary tract by endomorphin-1. J Neurophysiol 93:2530-40

    PubMed  CAS  Google Scholar 

  • Glaum SR, Miller RJ, Hammond DL (1994) Inhibitory actions of delta 1-, delta 2-, and mu-opioid receptor agonists on excitatory transmission in lamina II neurons of adult rat spinal cord. J Neurosci 14:4965-71

    PubMed  CAS  Google Scholar 

  • Go VLW, Yaksh TL (1987) Release of substance P from the cat spinal cord. J Physiol (Lond) 391:141-67

    CAS  Google Scholar 

  • G öthert M (1981) ACTH 1-24 increases stimulation-evoked noradrenaline release from sympa-thetic nerves by acting on presynaptic ACTH receptors. Eur J Pharmacol 76:295-6

    Google Scholar 

  • G öthert M (1984) Facilitatory effect of adrenocorticotropic hormone and related peptides on Ca2+ dependent noradrenaline release from sympathetic nerves. Neuroscience 11:1001-9

    Google Scholar 

  • G öthert M, Hentrich F (1984) Role of cAMP for regulation of impulse-evoked noradrenaline release from the rabbit pulmonary artery and its possible relationship to presynaptic ACTH receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 328:127-34

    Google Scholar 

  • Grudt TJ, Henderson G (1998) Glycine and GABAA receptor-mediated synaptic transmission in rat substantia gelatinosa: inhibition by mu-opioid and GABAB agonists. J Physiol 507:473-83

    PubMed  CAS  Google Scholar 

  • Guarraci FA, Pozo MJ, Palomares SM et al (2002) Opioid agonists inhibit excitatory neurotrans-mission in ganglia and at the neuromuscular junction in guinea pig gallbladder. Gastroenterology 122:340-51

    PubMed  CAS  Google Scholar 

  • Guerrini R, Calo G, Rizzi A et al (1998) A new selective antagonist of the nociceptin receptor. Brit J Pharmacol 123:163-5

    CAS  Google Scholar 

  • Gutstein HB, Akil H (2006) Opioid analgesics. In: Brunton LL (ed) Goodman and Gilman’s The Pharmacological Basis of Therapeutics. McGraw-Hill, New York, pp 547-90

    Google Scholar 

  • Hahm ET, Lee JJ, Min BI et al (2004) Opioid inhibition of GABAergic neurotransmission in mechanically isolated rat periqueductal gray neurons. Neurosci Res 50:343-54

    PubMed  CAS  Google Scholar 

  • Hayar A, Guyenet PG (1998) Pre- and postsynaptic inhibitory actions of methonine-enkephalin on identified bulbospinal neurons of the rat RVL. J Neurophysiol 80:2003-14

    PubMed  CAS  Google Scholar 

  • Hjelmstadt GO, Fields HL (2001) Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell. J Neurophysiol 85:1153-8

    Google Scholar 

  • Ho M, Corbett AD, McKnight AT (2000) Characterization of the ORL1 receptor on adrenergic nerves in the rat anococcygeus muscle. Br J Pharmacol 131:349-55

    PubMed  CAS  Google Scholar 

  • Honda E, Ono K, Inenaga K (2004) DAMGO suppresses both excitatory and inhibitory synaptic transmission in supraoptic neurones of mouse hypothalamic slice preparations. J Neuroendocrinol 16:198-207

    PubMed  CAS  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577-9

    PubMed  CAS  Google Scholar 

  • Illes P (1989) Modulation of transmitter and hormone release by multiple neuronal opioid receptors. Rev Physiol Biochem Pharmacol 112:141-233

    Google Scholar 

  • Jackisch R (1991) Regulation of neurotransmitter release by opiates and opioid peptides in the central nervous system. In: Feigenbaum J, Hanani M (eds) Presynaptic regulation of neurotransmitter release: a handbook. Freund Publishing House, Tel Aviv, pp 551-92

    Google Scholar 

  • Johnston MF, Kravitz EA, Meiri H et al (1983) Adrenocorticotropic hormone causes long-lasting potentiation of transmitter release from frog motor nerve terminals. Science 220:1071-2

    PubMed  CAS  Google Scholar 

  • Katayama Y, Homma T, Honda K et al (2003) Actions of orexin A in the myenteric plexus of the guinea-pig small intestine. Neuroreport 14:1515-18

    PubMed  CAS  Google Scholar 

  • Katayama Y, Hirai K, Homma T et al (2005) Actions of orexins on individual myenteric neurons of the guinea-pig ileum: orexin A or B? Neuroreport 16:745-9

    PubMed  CAS  Google Scholar 

  • Kennedy C, Krier J (1987) d-Opioid receptors mediate inhibition of fast excitatory postsynaptic potentials in cat parasympathetic colonic ganglia. Br J Pharmacol 92:437-43

    PubMed  CAS  Google Scholar 

  • Kerchner GA, Zhuo M (2002) Presynaptic suppression of dorsal horn inhibitory transmission by mu-opioid receptors. J Neurophysiol 88:520-2

    PubMed  CAS  Google Scholar 

  • King PJ, Williams G, Doods H et al (2000) Effect of a selective neuropeptide Y Y2 receptor antagonist BIIE 0246 on neuropeptide Y release. Eur J Pharmacol 396:1-3

    Google Scholar 

  • Kishimoto K, Koyama S, Akaike N (2001) Synergistic mu-opioid and 5-HT1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons. Neuropharmacology 41:529-38

    PubMed  CAS  Google Scholar 

  • Klapstein GJ, Colmers WF (1992) 4-Aminopyridine and low Ca2+ differentiate presynaptic inhibition mediated by neuropeptide Y, baclofen and 2-chloroadenosine in rat hippocampal CA1 in vitro. Br J Pharmacol 105:470-4

    PubMed  CAS  Google Scholar 

  • Lambe E, Aghajanian GK (2003) Hypocretin (orexin) induces calcium transients in single spines postsynaptic to identified the boutons in prefrontal slice. Neuron 40:139-50

    PubMed  CAS  Google Scholar 

  • Li Y, Gao XB, Sakurai T et al (2002) Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron - a potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36:1169-81

    PubMed  CAS  Google Scholar 

  • Lin L, Faraco J, Li R et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365-76

    PubMed  CAS  Google Scholar 

  • Liu QS, Han S, Jia YS et al (1999) Selective modulation of excitatory transmission by mu-opioid receptor activation in rat supraoptic neurons. J Neurophysiol 82:3000-5

    PubMed  CAS  Google Scholar 

  • Liu S, Hu HZ, Ren J et al (2001) Pre- and postsynaptic inhibition by nociceptin in guinea pig small intestinal myenteric plexus in vitro. Am J Physiol Gastrointest Liver Physiol 281:G237-G246

    PubMed  CAS  Google Scholar 

  • Mahns DA, Lacroix JS, Potter EK (1998) Inhibition of vagal vasodilatation by a selective neu-ropeptide YY2 receptor agonist in the bronchial circulation of anaesthetised dogs. J Auton Nerv Syst 73:80-5

    PubMed  CAS  Google Scholar 

  • Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201-27

    PubMed  CAS  Google Scholar 

  • Modin A, Pernow J, Lundberg JM (1994) Repeated renal and splenic sympathetic nerve stimulation in anaesthetized pigs. J Auton Nerv Syst 49:123-34

    PubMed  CAS  Google Scholar 

  • Moran TD, Colmers WF, Smith PA (2004) Opioid-like actions of neuropeptide Y in rat substantia gelatinosa: Y1 suppression of inhibition and Y2 suppression of excitation. J Neurophysiol 92:3266-75

    PubMed  CAS  Google Scholar 

  • Morris MJ (2004) Neuropeptide Y and cardiovascular function. In: Michel MC (ed) Neuropeptide Y and related peptides, Handbook of Experimental Pharmacology, vol 162. Springer, Berlin, pp 327-59

    Google Scholar 

  • Mulder AH, Schoffelmeer ANM (1993) Multiple opioid receptors and presynaptic modulation of neurotransmitter release in the brain. In: Herz A (ed) Opioids I, Handbook of Experimental Pharmacology, vol 104/I. Springer, Berlin, pp 125-44

    Google Scholar 

  • Nakazi M (2001) Hemmung der Serotoninfreisetzung im M äusegehirn durch Cannabinoid-CB1 Rezeptoren und andere Rezeptorsysteme. Thesis, University of Bonn

    Google Scholar 

  • Nakazi M, Bauer U, Nickel T et al (2000) Inhibition of serotonin release in the mouse brain via presynaptic cannabinoid CB1 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 361:19-24

    CAS  Google Scholar 

  • Nicholson JR, Paterson SJ, Menzies JRW et al (1998) Pharmacological studies on the “orphan” opioid receptor in central and peripheral sites. Can J Physiol Pharmacol 76:304-13

    PubMed  CAS  Google Scholar 

  • Nikolarakis KE, Almeida OF, Yassouridis A et al (1989) Presynaptic auto- and allelo-receptor regulation of hypothalamic opioid peptide release. Neuroscience 31:269-73

    PubMed  CAS  Google Scholar 

  • Odar-Cederlof I, Ericsson F, Theodorsson E et al (2003) Neuropeptide-Y and atrial natriuretic peptide as prognostic markers in patients on hemodialysis. ASAIO J 49:74-80

    PubMed  Google Scholar 

  • Ogura M, Kita H (2000) Dynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat. J Neurophysiol 83:3366-76

    PubMed  CAS  Google Scholar 

  • Ostermeier AM, Schlosser B, Schwender D et al (2000) Activation of mu- and delta-opioid receptors causes presynaptic inhibition of glutamatergic excitation in neocortical neurons. Anesthesiology 93:1053-63

    PubMed  CAS  Google Scholar 

  • Pan YZ, Li DP, Chen SR et al (2002) Activation of delta-opioid receptors excites spinally projecting locus coeruleus neurons through inhibition of GABAergic inputs. J Neurophysiol 88:2675-83

    PubMed  CAS  Google Scholar 

  • Pan YZ, Li DP, Chen SR et al (2004) Activation of mu-opioid receptors excites a population of locus coeruleus-spinal neurons through presynaptic disinhibition. Brain Res 997:67-78

    PubMed  CAS  Google Scholar 

  • Potter EK, Tripovic D (2006) Modulation of sympathetic neurotransmission by neuropeptide Y Y2 receptors in rats and guinea pigs. Exp Brain Res 173:346-52

    PubMed  CAS  Google Scholar 

  • Qian J, Colmers WF, Saggau P (1997) Inhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: modulation of presynaptic Ca2+ entry. J Neurosci 17:8169-77

    PubMed  CAS  Google Scholar 

  • Rhim H, Kinney GA, Emmerson PJ et al (1997) Regulation of neurotransmission in the arcuate nucleus of the rat by different neuropeptide Y receptors. J Neurosci 17:2980-9

    PubMed  CAS  Google Scholar 

  • Rogers H, Henderson G (1990) Activation of mu- and delta-opioid receptors present on the same nerve terminals depresses transmitter release in the mouse hypogastric ganglion. Brit J Pharmacol 101:505-12

    CAS  Google Scholar 

  • Rominger A, F örster S, Zentner J et al (2002) Comparison of the ORL1 receptor-mediated inhibition of noradrenaline release in human and rat neocortical slices. Br J Pharmacol 135:800-6

    PubMed  CAS  Google Scholar 

  • S ándor NT, Kiss J, S ándor A et al (1991) Naloxone enhances the release of acetylcholine from cholinergic interneurons of the striatum if the dopaminergic input is impaired. Brain Res 552:343-5

    Google Scholar 

  • Schlicker E, Kathmann M (2000) Modulation of the release of noradrenaline and other transmitters via cannabinoid and opioid receptors. Fundam Clin Pharmacol 14:64

    Google Scholar 

  • Schlicker E, Morari M (2000) Nociceptin/orphanin FQ and neurotransmitter release in the central nervous system. Peptides 21:1023-9

    PubMed  CAS  Google Scholar 

  • Schlicker E, Werthwein S, Kathmann M et al (1998) Nociceptin inhibits noradrenaline release in the mouse brain cortex via presynaptic ORL1 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 358:418-22

    CAS  Google Scholar 

  • Schlosser B, Kudernatsch MB, Sutor B et al (1995) Delta, mu and kappa opioid receptor agonists inhibit dopamine overflow in rat neostriatal slices. Neurosci Lett 191:126-30

    PubMed  CAS  Google Scholar 

  • Schwertfeger E, Klein T, Vonend O et al (2004) Neuropeptide Y inhibits acetylcholine release in human heart atrium by activation of Y2 -receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 369:455-61

    CAS  Google Scholar 

  • Serone AP, Wright CE, Angus JA (1999) Heterogeneity of prejunctional NPY receptor-mediated inhibition of cardiac neurotransmission. Brit J Pharmacol 127:99-108

    CAS  Google Scholar 

  • Shen KZ, Johnson SW (2002) Presynaptic modulation of synaptic transmission by opioid receptor in rat subthalamic nucleus in vitro. J Physiol 541:219-30

    PubMed  CAS  Google Scholar 

  • Simmoneaux V, Ouichou A, Craft C et al (1994) Presynaptic and postsynaptic effects of neuropeptide Y in the rat pineal gland. J Neurochem 62:2464-71

    Article  Google Scholar 

  • Simmons ML, Terman GW, Drake CT et al (1994) Inhibition of glutamate release by presynaptic kappa 1-opioid receptors in the guinea pig dentate gyrus. J Neurophysiol 72:1697-1705

    PubMed  CAS  Google Scholar 

  • Smart D, Jerman JC (2002) The physiology and pharmacology of the orexins. Pharmacol Ther 94:51-61

    PubMed  CAS  Google Scholar 

  • Smith BN, Davis SF, van den Pol AN et al (2002) Selective enhancement of excitatory synaptic activity in the rat nucleus tractus solitarius by hypocretin 2. Neuroscience 115:707-14

    PubMed  CAS  Google Scholar 

  • Smith-White MA, Herzog H, Potter EK (2002) Role of neuropeptide Y Y2 receptors in modulation of cardiac parasympathetic neurotransmission. Regul Peptides 103:105-11

    CAS  Google Scholar 

  • Stanford IM, Cooper AJ (1999) Presynaptic mu and delta opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. J Neurosci 19:4796-4803

    PubMed  CAS  Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77:1-124

    PubMed  CAS  Google Scholar 

  • Stj ärne L, Stj ärne E, Mshgina M (1989) Does clonidine or neuropeptide Y-mediated inhibition of ATP secretion from sympathetic nerves operate primarily by increasing a potassium conductance? Acta Physiol Scand 136:137-8

    Google Scholar 

  • Storr M, Hahn A, Gaffal E et al (2002) Effects of endomorphin-1 and -2 on on mu-opioid receptors in myenteric neurons and in the peristaltic reflex in rat small intestine. Clin Exp Pharmacol Physiol 29:428-34

    PubMed  CAS  Google Scholar 

  • Sun QQ, Akk G, Huguenard JR et al (2001) Differential regulation of GABA release and neuronal excitability mediated by neuropeptide Y1 and Y2 receptors in rat thalamic neurons. J Physiol 531:81-94

    PubMed  CAS  Google Scholar 

  • Szabo B Hedler L, Lichtwald K et al (1987) ACTH increases noradrenaline release in pithed rabbits with electrically stimulated sympathetic outflow. Eur J Pharmacol 136:391-9

    Google Scholar 

  • Szabo B, Hedler L, Schurr C et al (1988) ACTH increases noradrenaline release in the rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 338:368-72

    CAS  Google Scholar 

  • Szabo B, Hedler L, Starke K (1989) Facilitation of the release of noradrenaline: an extra-adrenal effect of adrenocorticotropic hormone. Resuscitation 18:229-42

    PubMed  CAS  Google Scholar 

  • Tatemoto K (2004) Neuropeptide Y: history and overview. In: Michel MC (ed) Neuropeptide Y and related peptides, Handbook of Experimental Pharmacology, vol 162. Springer, Berlin, pp 1-21

    Google Scholar 

  • Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y - a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659-60

    PubMed  CAS  Google Scholar 

  • Taube HD, Borowski E, Endo T et al (1976) Enkephalin: a potential modulator of noradrenaline release in rat brain. Eur J Pharmacol 38:377-80

    PubMed  CAS  Google Scholar 

  • Thannickal TC, Moore RY, Nienhuis R (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469-74

    PubMed  CAS  Google Scholar 

  • Trendelenburg P (1917) Physiologische und pharmakologische Versuche über die D ünndarmperistaltik. Arch Exp Pathol Pharmakol 81:55-129

    Google Scholar 

  • Trendelenburg AU, Cox SL, Schelb V et al (2000) Modulation of 3 H-noradrenaline release by presynaptic opoid, cannabinoid and bradykinin and ß-adrenoceptors in mouse tissues. Brit J Pharmacol 130:321-30

    CAS  Google Scholar 

  • Tu B, Timofeeva O, Jiao Y et al (2005) Spontaneous release of neuropeptide Y tonically inhibits recurrent mossy fiber synaptic transmission in epileptic brain. J Neurosci 25:1718-29

    PubMed  CAS  Google Scholar 

  • Ueda H, Fukushima N, Ge M et al (1987) Presynaptic opioid kappa-receptor and regulation of the release of Met-enkephalin in the rat brainstem. Neurosci Lett 81:309-13

    PubMed  CAS  Google Scholar 

  • van den Pol AN, Gao XB, Obrietan K et al (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 18:7962-71

    PubMed  Google Scholar 

  • Vaughan CW, Christie MJ (1997) Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. J Physiol 498:463-72

    PubMed  CAS  Google Scholar 

  • Vaughan CW, Ingram SL, Christie MJ (1997) Actions of the ORL1 receptor ligand nociceptin on membrane properties of rat periaqueductal gray neurons in vitro. J Neurosci 17:996-1003

    PubMed  CAS  Google Scholar 

  • Vezzani A, Sperk G (2004) Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy ? Neuropeptides 38:245-52

    PubMed  CAS  Google Scholar 

  • Wang SJ (2005) Activation of neuropeptide Y Y1 receptors inhibits glutamate release through reduction of voltage-dependent Ca2+ entry in the rat cerebral cortex nerve terminals: suppression of this inhibitory effect by the protein kinase C-dependent facilitatory pathway. Neuroscience 134:987-1000

    PubMed  CAS  Google Scholar 

  • Wang X, Dergacheva O, Griffioen KJ et al (2004) Action of kappa and delta opioid agonists on premotor cardiac vagal neurons in the nucleus ambiguus. Neuroscience 129:235-41

    PubMed  CAS  Google Scholar 

  • Werling LL, McMahon PN, Cox BM (1989) Effects of pertussis toxin on opioid regulation of catecholamine release from rat and guinea pig brain slices. Naunyn-Schmiedeberg’s Arch Pharmacol 339:509-13

    CAS  Google Scholar 

  • Westfall TC (2004) Prejunctional effects of of neuropeptide Y and its role as a cotransmitter. In: Michel MC (ed) Neuropeptide Y and related peptides, Handbook of Experimental Pharmacology, vol 162. Springer, Berlin, pp 137-83

    Google Scholar 

  • Yang XP, Chiba S (2002) Antagonistic interaction between BIIE 0246, a neuropeptide Y Y2-receptor antagonist, and omega-conotoxin GVIA, a Ca2+ channel antagonist, in presynaptic transmitter releases in dog splenic arteries. Jpn J Pharmacol 89:188-91

    PubMed  CAS  Google Scholar 

  • Yu XJ, Moskowitz MA (1996) Neuropeptide Y Y2 receptor-mediated attenuation of neurogenic plasma extravasation acting through pertussis toxin-sensitive mechanisms. Br J Pharmacol 119:229-32

    PubMed  CAS  Google Scholar 

  • Yu TP, Fein J, Phan T et al (1997) Orphanin FQ inhibits synaptic transmission and long-term potentiation in rat hippocampus. Hippocampus 7:88-94

    PubMed  CAS  Google Scholar 

  • Yu Y, Wang X, Cui Y et al (2006) Abnormal modulation of cholinergic neurotransmission by endomorphin 1 and endomorphin 2 in isolated bronchus of type 1 diabetic rats. Peptides 27:2770-7

    PubMed  CAS  Google Scholar 

  • Zhu W, Pan ZZ (2005) Mu-opioid-mediated inhibition of glutamate synaptic transmission in rat central amygdala neurons. Neuroscience 133:97-103

    PubMed  CAS  Google Scholar 

  • Z öllner C, Stein C (2007) Opioids. In: Stein C (ed) Analgesia, Handbook of Experimental Pharmacology, vol 177. Springer, Berlin, pp 31-63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlicker, E., Kathmann, M. (2008). Presynaptic Neuropeptide Receptors. In: Südhof, T.C., Starke, K. (eds) Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74805-2_13

Download citation

Publish with us

Policies and ethics