Skip to main content

Indium Phosphide: Crystal Growth and Defect Control by Applying Steady Magnetic Fields

  • Chapter
  • 17k Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

The application of steady magnetic fields during crystal growth of indium phosphide is described, and the effect of the magnetic fields on crystal properties is analyzed. The use of magnetic fields is one of many engineering controls that can improve homogeneity and crystal quality. This method is especially relevant to InP because of the high pressure requirement for crystal growth. Under high pressure, fluid flows in the melt and in the gas environment can become uncontrolled and turbulent, with negative effects on crystal quality and reproducibility. If properly configured, a steady magnetic field can reduce random oscillatory motion in the melt and reduce the likelihood of defect formation during growth. This chapter presents the history and development of magnetic-field-assisted growth of InP and an analysis of the effects of applied fields on crystal quality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BPS:

Burton–Prim–Slichter

CW:

continuous wave

DLTS:

deep-level transient spectroscopy

EM:

electromagnetic

GDMS:

glow-discharge mass spectrometry

IR:

infrared

LEC:

liquid encapsulation Czochralski

LVM:

local vibrational mode

MLEC:

magnetic liquid-encapsulated Czochralski

MLEK:

magnetically stabilized liquid-encapsulated Kyropoulos

MMIC:

monolithic microwave integrated circuit

OEIC:

optoelectronic integrated circuit

PC:

photoconductivity

PL:

photoluminescence

SWBXT:

synchrotron white beam x-ray topography

TPB:

three-phase boundary

VB:

valence band

VB:

vertical Bridgman

VGF:

vertical gradient freeze

YAG:

yttrium aluminum garnet

sPC:

scanning photocurrent

References

  1. J.E. Bowers, H. Park, A.W. Fang, R. Jones, O. Cohen, M. Paniccia: A technology for integrating active photonic devices on SOI wafers, Proc. Int. Conf. InP Relat. Mater. (Princeton 2006) pp. 218–221

    Google Scholar 

  2. E.P.A. Metz, R. Miller, R. Mazelsky: A technique for pulling single crystals of volatile materials, J. Appl. Phys. 33, 2016–2017 (1962)

    Article  ADS  Google Scholar 

  3. B. Mullin, R. Heritage, C. Holiday, B. Straughan: Liquid encapsulation crystal pulling at high pressures, J. Cryst. Growth 3-4, 284 (1968)

    Article  ADS  Google Scholar 

  4. K.J. Bachmann, E. Buehler: The growth of InP crystals from the melt, J. Electron. Mater. 3, 279 (1974)

    Article  ADS  Google Scholar 

  5. L. Henry, E.M. Swiggard: InP growth and properties, J. Electron. Mater. 7, 647–657 (1978)

    Article  ADS  Google Scholar 

  6. D.F. Bliss: InP bulk crystal growth and characterization. In: InP-Based Materials and Devices: Physics and Technology, ed. by O. Wada, H. Hasegawa (Wiley, New York 1999), Chap. 5

    Google Scholar 

  7. I.R. Grant: Indium phosphide crystal growth. In: Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, ed. by P. Capper (Wiley, Chichester 2005), Chap. 4

    Google Scholar 

  8. H. Utech, M. Flemings: Elimination of solute banding in indium antimonide crystals by growth in a magnetic field, J. Appl. Phys. 37, 2021–2024 (1966)

    Article  ADS  Google Scholar 

  9. H. Chedzey, D. Hurle: Avoidance of growth-striae in semiconductor and metal crystals grown by zone-melting techniques, Nature 210, 933–934 (1966)

    Article  ADS  Google Scholar 

  10. H. Miyairi, T. Inada, M. Eguchi, T. Fukuda: Growth and properties of InP single crystals grown by the magnetic field applied LEC method, J. Cryst. Growth 79, 291–295 (1986)

    Article  ADS  Google Scholar 

  11. S. Bachowski, D.F. Bliss, B. Ahern, R.M. Hilton: Magnetically stabilized Kyropoulos and Czochralski growth of InP, 2nd Int. Conf. InP Relat. Mater. (Denver, 1990) pp. 30–34

    Google Scholar 

  12. J. Burton, R. Prim, W. Slichter: The distribution of solute in crystals grown from the melt. Part I Theoretical, J. Chem. Phys. 21, 1987–1991 (1953)

    Article  ADS  Google Scholar 

  13. T. Hicks, N. Riley: Boundary layers in magnetic Czochralski crystal growth, J. Cryst. Growth 96, 957–968 (1989)

    Article  ADS  Google Scholar 

  14. D. Hurle, R. Series: Effective distribution coefficient in magnetic Czochralski growth, J. Cryst. Growth 73, 1–9 (1985)

    Article  ADS  Google Scholar 

  15. J. Czochralski: Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle, Z. Phys. Chem. 92, 219 (1918), in German

    Google Scholar 

  16. S. Yoshida, S. Ozawa, T. Kijima, J. Suzuki, T. Kikuta: InP single crystal growth with controlled supercooling during the early stage by a modified LEC method, J. Cryst. Growth 113, 221–226 (1991)

    Article  ADS  Google Scholar 

  17. D. Bliss, R. Hilton, J. Adamski: MLEK crystal growth of large diameter (100) indium phosphide, J. Cryst. Growth 128, 451–456 (1993)

    Article  ADS  Google Scholar 

  18. D. Bliss, R. Hilton, S. Bachowski, J. Adamski: MLEK crystal growth of (100) indium phosphide, J. Electron. Mater. 20, 967–971 (1991)

    Article  ADS  Google Scholar 

  19. S. Ozawa, T. Kimura, J. Kobayashi, T. Fukuda: Programmed magnetic field applied liquid encapsulated Czochralski crystal growth, Appl. Phys. Lett. 50, 329–331 (1987)

    Article  ADS  Google Scholar 

  20. S. Kyropoulos: Ein Verfahren zur Herstellung grosser Kristalle, Z. Anorg. Allg. Chem. 154, 308–311 (1926), in German

    Article  Google Scholar 

  21. A.F. Wells: Crystal Growth, Annual Reports on the Progress of Chemistry (Chemical Society, London 1946) pp. 62–87

    Google Scholar 

  22. J.L. Morton, N. Ma, D. Bliss, G. Bryan: Diffusion-controlled dopant transport during magnetically-stabilized liquid-encapsulated Czochralski growth of compound semiconductor crystals, ASME J. Fluids Eng. 123(4), 893–898 (2001)

    Article  Google Scholar 

  23. D.T.J. Hurle, R.W. Series: Use of a magnetic field in melt growth. In: Handbook of Crystal Growth, Vol. 2A, ed. by D.T.J. Hurle (Elsevier, Amsterdam 1994) pp. 261–285

    Google Scholar 

  24. J.S. Walker: Models of melt motion, heat transfer, and mass transportduring crystal growth with strong magnetic fields. In: Progress in Crystal Growth and Characterization of Materials, Vol. 38, ed. by K.W. Benz (Elsevier, Amsterdam 1999) pp. 195–213

    Google Scholar 

  25. N. Ma, J. Walker, D. Bliss, G. Bryant: Forced convection during liquid encapsulated crystal growth with an axial magnetic field, J. Fluids Eng. 120, 844–850 (1998)

    Article  Google Scholar 

  26. J.L. Morton, N. Ma, D.F. Bliss, G.G. Bryant: Magnetic field effects during liquid-encapsulated Czochralski growth of doped photonic semiconductor crystals, J. Cryst. Growth 250(1/2), 174–182 (2003)

    Article  ADS  Google Scholar 

  27. Y.F. Zou, H. Zhang, V. Prasad: Dynamics of melt–crystal interface and coupled convection-stress predictions for Czochralski crystal growth processes, J. Cryst. Growth 166, 476–482 (1996)

    Article  ADS  Google Scholar 

  28. H. Zhang, V. Prasad, D.F. Bliss: Modeling of high pressure, liquid-encapsulated Czochralski growth of InP crystals, J. Cryst. Growth 169, 250–260 (1996)

    Article  ADS  Google Scholar 

  29. D. Hurle: A mechanism for twin formation during Czochralski and encapsulated vertical Bridgman growth of III–V compound semiconductors, J. Cryst. Growth 147, 239–250 (1995)

    Article  ADS  Google Scholar 

  30. J.C. Brice: Facet formation during crystal pulling, J. Cryst. Growth 6, 205–206 (1970)

    Article  ADS  Google Scholar 

  31. K.F. Hulme, J.B. Mullin: Indium antimonide: A review of its preparation, properties and device applications. In: Solid State Electron, Vol. 5 (Pergamon, London 1962) pp. 211–247

    Google Scholar 

  32. W. Bonner: Reproducible preparation of twin-free InP crystals using the LEC technique, Mater. Res. Bull. 15, 63–72 (1980)

    Article  Google Scholar 

  33. H. Chung, M. Dudley, D.J. Larson Jr., D.T.J. Hurle, D.F. Bliss, V. Prasad: The mechanism of growth-twin formation in zincblende crystals: new insights from a study of magnetic liquid encapsulated Czochralski-grown InP single crystals, J. Cryst. Growth 187, 9–17 (1998)

    Article  ADS  Google Scholar 

  34. G.G. Bryant, D.F. Bliss, D. Leahy, R. Lancto, N. Ma, J. Walker: Crystal growth of bulk InP from magnetically stabilized melts with a cusped field, Proc. Int. Conf. InP Relat. Mater. (Hyannis 1997) pp. 416–419

    Google Scholar 

  35. J.B. Mullin, A. Royle, B.W. Straughan: The preparation and electrical properties of InP crystals grown by liquid encapsulation, Int. Symp. GaAs Relat. Compd., Aachen (IOP, London, Bristol 1970) pp. 41–49

    Google Scholar 

  36. K.J. Bachmann, E. Buehler: The growth of InP crystals from the melt, J. Electron. Mater. 3, 279–302 (1974)

    Article  ADS  Google Scholar 

  37. M. Dudley, B. Raghothamachar, Y. Guo, X.R. Huang, H. Chung, D.T.J. Hurle, D.F. Bliss: The influence of polarity on twinning in zincblende structure crystals: new insights from a study of magnetic liquid encapsulated Czochralski grown InP single crystals, J. Cryst. Growth 192, 1–10 (1998)

    Article  ADS  Google Scholar 

  38. W.A. Bonner: InP synthesis and LEC growth of twin-free crystals, J. Cryst. Growth 54, 21–31 (1981)

    Article  ADS  Google Scholar 

  39. A. Steinemann, U. Zimmerli: Growth peculiarities of GaAs single crystals, Solid State Electron. 6, 597–604 (1963)

    Article  ADS  Google Scholar 

  40. B.N. Oshcherin: On surface energies of AN B8−N semiconducting compounds, Phys. Status Solidi (a) 34, K181–K186 (1976)

    Article  ADS  Google Scholar 

  41. E. Beam, H. Temkin, S. Mahajan: Influence of dislocation density on IV characteristics of InP photodiodes, Semicond. Sci. Technol. 7, A229–A232 (1992)

    Article  ADS  Google Scholar 

  42. R.K. Jain, D. Flood: Influence of the dislocation density on the performance of heteroepitaxial InP solar cells, IEEE Trans. Electron. Dev. 40, 1928–1933 (1993)

    Article  ADS  Google Scholar 

  43. T. Lee, C. Burrus: Dark current and breakdown characteristics of dislocation-free InP photodiodes, Appl. Phys. Lett. 36, 587–589 (1980)

    Article  ADS  Google Scholar 

  44. W.C. Dash: Single crystals free of dislocations, J. Appl. Phys. 29, 736–737 (1958)

    Article  ADS  Google Scholar 

  45. S. Shinoyama, C. Uemura, A. Yamamoto, S. Tohno: Growth of dislocation-free undoped InP crystals, Jpn. J. Appl. Phys. 19, L331–L334 (1980)

    Article  ADS  Google Scholar 

  46. D.F. Bliss, J.Y. Zhao, G. Bryant, R. Lancto, M. Dudley, V. Prasad: Dislocation generation and propogation near the seed–crystal interface during MLEC crystal growth of sulfur-doped InP, Proc. 11th Int. Conf. InP Relat. Mater. (IEEE, Davos 1998) p. 163

    Google Scholar 

  47. M. Dudley: X-ray topography. In: Encyclopedia of Advanced Materials, Vol. 4, ed. by D. Bloor, R.J. Brook, M.C. Flemings, S. Mahajan (Pergamon, Oxford 1994) pp. 2950–2956

    Google Scholar 

  48. H. Klapper: Characterization of Crystal Growth Defects by X-ray Methods, ed. by B.K. Tanner, D.K. Bowen (Plenum Press, New York London 1980) p. 133

    Google Scholar 

  49. F.X. Zach: New insights into the compensation mechanism of Fe-doped InP, J. Appl. Phys. 75, 7894 (1994)

    Article  ADS  Google Scholar 

  50. M. Chauvet, S.A. Hawkins, G.J. Salamo, D.F. Bliss, G. Bryant: Evaluation of InP:Fe parameters by measurement of two wave mixing photorefractive and absorptive gain, J. Electron. Mater. 27, 883–890 (1998)

    Article  ADS  Google Scholar 

  51. J. Wolk, G. Iseler, G. Bryant, E. Bourret-Courchesne, D. Bliss: Annealing behavior of the hydrogen-related defect in LEC indium phosphide, Proc. 9th Int. Conf. InP Relat. Mater. (Hyannis 1997) pp. 408–411

    Google Scholar 

  52. F.X. Zach, E.E. Haller, D. Gabbe, G. Iseler, G.G. Bryant, D.F. Bliss: Electrical properties of the hydrogen defect in InP and the microscopic structure of the 2316 cm−1 hydrogen related line, J. Electron. Mater. 25, 331–335 (1996)

    Article  ADS  Google Scholar 

  53. J. Pankove, N. Johnson: Hydrogen in Semiconductors (Academic, Orlando 1991)

    Google Scholar 

  54. B. Pajot, J. Chevallier, A. Jalil, B. Rose: Spectroscopic evidence for hydrogen-phosphorus pairing in zinc-doped InP containing hydrogen, Semicond. Sci. Technol. 4, 91–93 (1989)

    Article  ADS  Google Scholar 

  55. R. Darwich, B. Pajot, B. Rose, D. Robein, B. Theys, R. Rahbi, C. Porte, F. Gendron: Experimental study of the hydrogen complexes in indium phosphide, Phys. Rev. B 48, 48 (1993)

    Article  Google Scholar 

  56. C. Ewels, S. Oberg, R. Jones, B. Pajot, P. Briddon: Vacancy- and acceptor-H complexes in InP, Semicond. Sci. Technol. 11, 502–507 (1996)

    Article  ADS  Google Scholar 

  57. A. Zappettini, R. Fornari, R. Capelletti: Electrical and optical properties of semi-insulating InP obtained by wafer and ingot annealing, Mater. Sci. Eng. B 45, 147–151 (1997)

    Article  Google Scholar 

  58. R. Fornari, A. Brinciotti, E. Gombia, R. Mosca, A. Huber, C. Grattepain: Annealing-related compensation in bulk undoped InP, Proc. 8th Conf. Semi-insulating III–V Mater., ed. by M. Godlewski (World Scientific, Warsaw 1994) pp. 283–286

    Google Scholar 

  59. G. Hirt, D. Wolf, G. Müller: Quantitative study of the contribution of deep and shallow levels to the compensation mechanisms in annealed InP, J. Appl. Phys. 74, 5538–5545 (1993)

    Article  ADS  Google Scholar 

  60. P.B. Klein, R.L. Henry, T.A. Kennedy, N.D. Wilsey: Semi-insulating behavior in undoped LEC InP after annealing in phosphorus. In: Defects in Semiconductors, Vol. 10–12, ed. by H.J. von Bardeleben Materials Science Forum (Trans. Tech. Pubs. 1986) pp. 1259–1264

    Google Scholar 

  61. K. Kainosho, H. Shimakura, H. Yamamoto, O. Oda: Undoped semi-insulating InP by high pressure annealing, Appl. Phys. Lett. 59, 932–934 (1991)

    Article  ADS  Google Scholar 

  62. D. Wolf, G. Hirt, G. Müller: Control of low Fe content in the preparation of semi-insulating InP by wafer annealing, J. Electron. Mater. 24, 93–97 (1995)

    Article  ADS  Google Scholar 

  63. K. Kainosho, M. Ohta, M. Uchida, M. Nakamura, O. Oda: Effect of annealing conditions on the uniformity of undoped semi-insulating InP, J. Electron. Mater. 25, 353–356 (1996)

    Article  ADS  Google Scholar 

  64. K. Kuriyama, K. Ushiyama, T. Tsunoda, M. Uchida, K. Yokoyama: Uniformity of deep levels in semi-insulating InP obtained by multiple-step wafer annealing, J. Electron. Mater. 27, 462–465 (1998)

    Article  ADS  Google Scholar 

  65. Q. Ye, J.A. Wolk, E.D. Bourret-Courchesne, D.F. Bliss: Annealing behavior of the hydrogen-vacancy complex in bulk InP, MRS Symp. Proc. H, Vol. 513 (1998) pp. 241–246

    Google Scholar 

  66. C.P. Ewels, S. Öberg, R. Jones, B. Pajot, P.R. Briddon: Vacancy- and acceptor-H complexes in InP, Semicond. Sci. Technol. 11, 502–507 (1996)

    Article  ADS  Google Scholar 

  67. R. Fornari: On the electrical activity of Fe LEC indium phosphide, Semicond. Sci. Technol. 14, 246–250 (1999)

    Article  ADS  Google Scholar 

  68. R. Fornari, T. Görög, J. Jimenez, E. De la Puente, M. Avella, I. Grant, M. Brozel, M. Nicholis: Uniformity of semi-insulating InP wafers obtained by Fe diffusion, J. Appl. Phys. 88, 5225–5229 (2000)

    Article  ADS  Google Scholar 

  69. M. Avella, J. Jimenez, A. Alvarez, R. Fornari, E. Giglioli, A. Sentiri: Uniformity and physical properties of semi-insulating Fe-doped InP after wafer annealing, J. Appl. Phys. 82, 3836–3845 (1997)

    Article  ADS  Google Scholar 

  70. A. Alvarez, M. Avella, J. Jiménez, M.A. Gonzalez, R. Fornari: Photocurrent contrast in semi-insulating Fe-doped InP, Semicond. Sci. Technol. 11, 941–946 (1996)

    Article  ADS  Google Scholar 

  71. M. Avella, J. Jiménez, A. Alvarez, M.A. Gonzalez, L.F. Sanz: A photocurrent study of semiinsulating Fe-doped InP, Mater. Sci. Eng. B 28, 111–114 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Bliss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Bliss, D.F. (2010). Indium Phosphide: Crystal Growth and Defect Control by Applying Steady Magnetic Fields. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_7

Download citation

Publish with us

Policies and ethics