Skip to main content

Analysis of Turbulent Structures in a Czochralski System Using DNS and LES Predictions

  • Conference paper
High Performance Computing in Science and Engineering `07
  • 1070 Accesses

Abstract

A DNS of the turbulent flow and heat transfer in an idealized Czochralski configuration was conducted using a very fine grid. The results show the irregular forming of buoyant thermal plumes as well as the occurrence of a large, stable vortical structure in the bulk of the melt. In the averaged flow field a B´enard-cell-like pattern can be recognized. The DNS data served also as a reference for the validation of the LES method. The LES computations were conducted using different grid sizes, SGS models, and discretization methods. For relatively fine grids and central differences, the results agree very well with the DNS. Using an upwind discretization introduces numerical errors. In combination with coarser grids, this leads to large deviations and even qualitative differences. However, overall the computational effort could be reduced significantly by LES. Thus a compromise between accuracy achieved and effort required has to be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, B., Enger, S., Breuer, M., and Durst, F. (2000) Three–Dimensional Simulation of Flow and Thermal Field in a Czochralski Melt Using a Block–Structured Finite–Volume Method, Journal of Crystal Growth, vol. 219, pp. 123–143

    Article  Google Scholar 

  2. Breuer, M., Rodi, W. (1996) Large–Eddy Simulation of Complex Turbulent Flows of Practical Interest, In: Flow Simulation with High–Performance Computers II, ed. E.H. Hirschel, Notes on Numer. Fluid Mech., vol. 52, pp. 258–274, Vieweg Verlag, Braunschweig

    Google Scholar 

  3. Breuer, M. (1998) Large–Eddy Simulation of the Sub–Critical Flow Past a Circular Cylinder: Numerical and Modeling Aspects, Int. J. for Numer. Methods in Fluids, vol. 28, pp. 1281–1302

    Article  MATH  Google Scholar 

  4. Breuer, M. (2000) A Challenging Test Case for Large–Eddy Simulation: High Reynolds Number Circular Cylinder Flow, Int. J. of Heat and Fluid Flow, vol. 21, no. 5, pp. 648–654

    Google Scholar 

  5. Breuer, M. (2002) Direkte Numerische Simulation und Large–Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern, Habilitationsschrift, Universität Erlangen–Nürnberg, Berichte aus der Strömungstechnik, ISBN: 3–8265–9958–6, Shaker Verlag, Aachen

    Google Scholar 

  6. Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. (1991) A Dynamic Subgrid-Scale Eddy Viscosity Muodel, Phys. Fluids A, vol. 3, pp. 1760–1765

    Article  MATH  Google Scholar 

  7. Gräbner, O., Müller, G., Virbulis, J., and Tomzig, E. (2001) Effects of Various Magnetic Field Configurations on Temperature Distributions in Czochralski Silicon Melts, Microelectronic Engineering, vol. 56, pp. 83–88

    Article  Google Scholar 

  8. Kumar, V., Basu, B., Enger, S., Brenner, G., and Durst, F. (2003) Role of Marangoni Convection in Si-Czochralski Melts, Part II: 3D Predictions with Crystal Rotation, Journal of Crystal Growth, vol. 255, pp. 27–39

    Article  Google Scholar 

  9. Leister, H.J. and Perić, M. (1993) Vectorized Strongly Implicit Solving Procedure for a Seven-Diagonal Coefficient Matrix, Int. Journal for Heat and Fluid Flow, vol. 4, pp. 159–172

    Article  Google Scholar 

  10. Pope, S.B. (2000) Turbulent flows, Cambridge University Press

    Google Scholar 

  11. Raufeisen, A., Breuer, M., Botsch, T., and Delgado, A. (2007) DNS of Rotating Buoyancy- and Surface Tension-Driven Flow, International Journal of Heat and Mass Transfer, submitted

    Google Scholar 

  12. Raufeisen, A., Breuer, M., Botsch, T., and Delgado, A. (2007) LES Validation of Turbulent Rotating Buoyancy– and Surface Tension–Driven Flow Against DNS, International Journal of Heat and Fluid Flow, submitted

    Google Scholar 

  13. Raufeisen, A., Jana, S., Breuer, M., Botsch, T., and Durst, F. (2007) 3D Computation of Oxygen Transport in Czochralski Crystal Growth of Silicon Considering Evaporation, Journal of Crystal Growth, vol. 303, pp. 146–149

    Article  Google Scholar 

  14. Rhie, C.M., Chow, W.L. (1983) A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation, AIAA Journal, vol. 21, pp. 1525–1532

    Article  MATH  Google Scholar 

  15. Smagorinsky, J. (1963) General Circulation Experiments with the Primitive Equations, I, The Basic Experiment, Mon. Weather Rev., vol. 91, pp. 99–165

    Article  Google Scholar 

  16. Stone, H.L. (1968) Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations, SIAM Journal of Numerical Analyses, vol. 5, pp. 530–558

    Article  MATH  Google Scholar 

  17. Zhu, J. (1991) A Low–Diffusive and Oscillation–Free Convection Scheme, Commun. Appl. Numerical Methods, vol. 7, pp. 225–232

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raufeisen, A., Breuer, M., Botsch, T., Delgado, A. (2008). Analysis of Turbulent Structures in a Czochralski System Using DNS and LES Predictions. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering `07. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74739-0_25

Download citation

Publish with us

Policies and ethics