Skip to main content

Representation and Modelling of Uncertainties in Chemistry and Transport Models

  • Chapter
  • First Online:
Data Assimilation
  • 3539 Accesses

Abstract

Representation and analysis of uncertainties (errors) is at the core of any data assimilation system. The main aim of data assimilation is to reduce uncertainties of model predictions using observations. Under Gaussian error statistics for both parts of the assimilation system (data and forecast), and by making the assumption of zero bias, optimal estimation schemes can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cohn, S.E., 1993. Dynamics of short-term univariate forecast error covariances. Mon. Weather Rev., 121, 3123–3149.

    Article  Google Scholar 

  • Gembicki, F.W., 1974. Vector Optimization for Control with Performance and Parameter Sensitivity Indices. Ph.D. Dissertation, Case Western Reserve University, Cleveland, OH.

    Google Scholar 

  • Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory, Academic Press, New York, 376 pp.

    Google Scholar 

  • Khattatov, B.V., 2003. Multivariate chemical data assimilation. In Data Assimilation for the Earth System. NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 279–288, 378pp.

    Google Scholar 

  • Khattatov, B.V., J.C. Gille, L.V. Lyjak, G.P. Brasseur, V.L. Dvortsov, A.E. Roche and J. Waters, 1999. Assimilation of photochemically active species and a case analysis of UARS data. J. Geophys. Res., 104,18715–18737.

    Article  Google Scholar 

  • Khattatov, B.V., L.V. Lyjak and J.C. Gille, 2001. On applications of photochemical models to the design of measurement strategies. Geophys. Res. Lett.,28, 2377–2381.

    Article  Google Scholar 

  • Lin, S.-J., and R.B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Q. J. R. Meteorol. Soc., 123, 2477–2498.

    Google Scholar 

  • Lorenc, A.C., 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 112, 1177–1194.

    Google Scholar 

  • Lyster, P.M., S.E. Cohn, R. Ménard, L.-P. Chang, S.-J. Lin and R. Olsen, 1997. An implementation of a two-dimensional filter for atmospheric chemical constituent assimilation on massively parallel computers. Mon. Weather. Rev., 125, 1674–1686.

    Article  Google Scholar 

  • Ménard, R. and L.-P. Chang, 2000. Stratospheric assimilation of chemical tracer observations using a Kalman filter. Part II: Chi-square validated results and analysis of variance and correlation dynamics. Mon. Weather Rev., 128, 2672–2686.

    Article  Google Scholar 

  • Ménard, R., S.E. Cohn, L.-P. Chang and P.M. Lyster, 2000. Stratospheric assimilation of chemical tracer observations using a Kalman filter. Part I: Formulation. Mon. Weather Rev.,128, 2654–2671.

    Article  Google Scholar 

  • Riishøjgaard, L.P., 1998. A direct way of specifying flow-dependent background error correlations for meteorological analysis systems. Tellus, 50A, 42–57.

    Article  Google Scholar 

  • Smyshlyaev, S.P., V.L. Dvortsov, M.A. Geller and V.A. Yudin, 1998. A two-dimensional model with input parameters from a GCM: Ozone sensitivity to different formulations for the longitude temperature variation. J. Geophys. Res., 103, 28373–28387.

    Article  Google Scholar 

  • Yudin, V.A., S.P. Smyshlyaev, V.L. Dvortsov and M.A. Geller, 2000. Transport diagnostics of GCMs and implications for 2D Chemistry-Transport Model of Troposphere and Stratosphere. J. Atmos. Sci., 57, 673–699.

    Article  Google Scholar 

Download references

Acknowledgments

A large portion of this work has been funded by NASA’s UARS grant UARS “Towards Interactive Three-dimensional chemical data assimilation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Khattatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khattatov, B., Yudin, V. (2010). Representation and Modelling of Uncertainties in Chemistry and Transport Models. In: Lahoz, W., Khattatov, B., Menard, R. (eds) Data Assimilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74703-1_17

Download citation

Publish with us

Policies and ethics