Skip to main content

Numerical Weather Prediction

  • Chapter
  • First Online:
Data Assimilation

Abstract

Numerical weather prediction (NWP) entails the use of computer models of the atmosphere to simulate how the state of the atmosphere is likely to evolve over a period of several hours up to 1 or 2 weeks ahead. This approach is central to modern operational weather forecasting: it is the improvements in NWP systems that have led to continual improvements in the skill of weather forecasts over recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergthorsson, P. and B. Döös, 1955. Numerical weather map analysis. Tellus, 7, 329–340.

    Article  Google Scholar 

  • Bowler, N.E., A. Arribas, K.R. Mylne, K.B. Robertson and S.E. Beare, 2008. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc., 134, 703–722.

    Article  Google Scholar 

  • Buizza R., C. Cardinali, G. Kelly and J.N. Thépaut, 2007. The value of observations. II: The value of observations located in singular-vector-based target areas. Q. J. R. Meteorol. Soc., 133, 1817–1832.

    Article  Google Scholar 

  • Buizza, R., M. Miller and T.N. Palmer, 1999. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc., 125, 2887–2908.

    Article  Google Scholar 

  • Charney, J., 1951. Dynamical Forecasting by Numerical Process. Compendium of meteorology. American Meteorological Society, Boston.

    Google Scholar 

  • Charney, J., R. Fjørtoft and J. von Neumann, 1950. Numerical integration of the barotropic vorticity model. Tellus, 2, 237–254.

    Article  Google Scholar 

  • Cohn, S.E., A. da Silva, J. Guo, M. Sienkiewicz and D. Lamich, 1998. Assessing the effects of data selection with the DAO Physical-space Statistical Analysis System. Mon. Weather Rev., 126, 2912–2926.

    Google Scholar 

  • Courtier P, E. Andersson, W. Heckley, et al., 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Q. J. R. Meteorol. Soc., 124, 1783–1807.

    Google Scholar 

  • Courtier, P., J.N. Thépaut and A. Hollingsworth, 1994. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc., 120, 1367–1387.

    Article  Google Scholar 

  • Cressman, G., 1959. An operational objective analysis system. Mon Weather Rev., 87, 367–374.

    Article  Google Scholar 

  • Cullen, M.J.P., 1993.The unified forecast/climate model. Meteorol. Mag., 122, 81–94.

    Google Scholar 

  • Davies, T.D., M.J.P. Cullen, A.J. Malcolm, et al., 2005. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759–1782.

    Article  Google Scholar 

  • Dharssi, I., A.C. Lorenc and N.B. Ingleby, 1992. Treatment of gross errors using maximum probability theory. Q. J. R. Meteorol. Soc., 118, 1017–1036.

    Article  Google Scholar 

  • Fisher, M., 2003. Background error covariance modelling. Recent Developments in Data Assimilation for Atmosphere and Ocean, ECMWF Seminar proceedings, Reading, UK, pp 45–63.

    Google Scholar 

  • Gandin, L., 1963. Objective analysis of meteorological fields. Gidromet., Leningrad (English translation Israel Program for Scientific Translation, Jerusalem, 1965).

    Google Scholar 

  • Gauthier, P. and J.-N. Thépaut, 2001. Impact of the digital filter as a weak constraint in the pre-operational 4D-Var assimilation system of Météo-France. Mon. Weather Rev., 129, 2089–2102.

    Google Scholar 

  • Gilchrist, B. and G. Cressman, 1954. An experiment in objective analysis. Tellus, 6, 309–318.

    Article  Google Scholar 

  • Hagedorn, R., T.M. Hamill and J.S. Whitaker, 2008. Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part 1: Two-meter temperatures. Mon. Weather Rev., 136, 2608–2619.

    Article  Google Scholar 

  • Hamill, T.M. and C. Snyder, 2000. A hybrid ensemble Kalman filter – 3D variational analysis scheme. Mon. Weather Rev., 128, 2905–2919.

    Article  Google Scholar 

  • Hamill, T.M., J.S. Whitaker and S.L. Mullen, 2006. Reforecasts, an important dataset for improving weather predictions. Bull. Amer. Meteorol. Soc., 87, 33–46.

    Article  Google Scholar 

  • Hoffman, R.N. and E. Kalnay, 1983. Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus, 35A, 100–118.

    Article  Google Scholar 

  • Houtekamer, P.L. and H.L. Mitchell, 2005. Ensemble Kalman Filtering. Q. J. R. Meteorol. Soc., 131, 3269–3289.

    Article  Google Scholar 

  • Johnson, C. and R. Swinbank, 2009. Medium-range multi-model ensemble combination and calibration. Q. J. R. Meteorol. Soc., 135, 777–794.

    Article  Google Scholar 

  • Kalnay, E., 2003. Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, 364pp.

    Google Scholar 

  • Kalnay E., M. Kanamitsu, R. Kistler, et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437–471.

    Article  Google Scholar 

  • Le Dimet, F-X. and O. Talagrand, 1986. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical Aspects. Tellus, 38A, 97–110.

    Article  Google Scholar 

  • Leith, C.E., 1974. Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev., 102, 409–418.

    Article  Google Scholar 

  • Lorenz, E.N., 1963. Deterministic non-periodic flow. J. Atmos. Sci., 20, 130–141.

    Article  Google Scholar 

  • Lorenc, A.C., 1981. A global three-dimensional multivariate statistical analysis scheme. Mon. Weather Rev., 109, 701–721.

    Article  Google Scholar 

  • Lorenc, A.C., 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 112, 1177–1194.

    Article  Google Scholar 

  • Lorenc, A.C., S.P. Ballard, R.S. Bell, N.B. Ingleby, P.L.F. Andrews, D.M. Barker, J.R. Bray, A.M. Clayton, T. Dalby, D. Li, T.J. Payne and F.W. Saunders, 2000. The Met. Office global 3-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc., 126, 2991–3012.

    Google Scholar 

  • Lorenc, A.C., R.S. Bell and B. Macpherson, 1991. The meteorological office analysis correction data assimilation scheme. Q. J. R. Meteorol. Soc., 117, 59–89.

    Article  Google Scholar 

  • Lorenc, A.C. and O. Hammon, 1988. Objective quality control of observations using Bayesian methods – Theory, and a practical implementation. Q. J. R. Meteorol. Soc., 114, 515–543.

    Article  Google Scholar 

  • Lynch, P. and X.-Y. Huang, 1992. Initialization of the HIRLAM model using a digital filter. Mon. Weather Rev., 120, 1019–1034.

    Google Scholar 

  • Lyne, W.H., R. Swinbank and N.T. Birch, 1982. A data assimilation experiment, with results showing the atmospheric circulation during the FGGE special observing periods. Q. J. R. Meteorol. Soc., 108, 575–594.

    Article  Google Scholar 

  • Machenhauer, B., 1977. On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Contrib. Atmos. Phys., 50, 253–271.

    Google Scholar 

  • Matsueda, M. and H.L Tanaka, 2008. Can MCGE outperform the ECMWF ensemble? SOLA, 4, 77–80. doi:10.2151/sola.2008-020.

    Article  Google Scholar 

  • Ott, E., B.R. Hunt, I. Szunyogh, A.V. Zimin, E.J. Kostelich, M. Corazza, E. Kalnay, D.J. Patil and J.A. Yorke, 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.

    Article  Google Scholar 

  • Panovsky, H., 1949. Objective weather-map analysis. J. Appl. Meteor, 6, 386–392.

    Article  Google Scholar 

  • Park, Y.-Y., R. Buizza and M. Leutbecher, 2008. TIGGE: Preliminary results on comparing and combining ensembles. Q. J. R. Meteorol. Soc., 134, 2051–2066. Also published as ECMWF Technical Memorandum No. 548.

    Article  Google Scholar 

  • Parrish, D.F. and J.C. Derber, 1992. The National Meteorological Center’s spectral statistical interpolation analysis scheme. Mon. Weather Rev., 120, 1747–1763.

    Article  Google Scholar 

  • Purser, R.J., 1999. Non-standard grids. Recent Developments in Numerical Methods for Atmospheric Modelling, ECMWF seminar 7–11 September 1998, pp 44–72.

    Google Scholar 

  • Richardson, L., 1922. Weather Prediction by Numerical Process. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rodgers, C.D., 2000. Inverse Methods in Atmospheric Sounding: Theory and Practice. World Scientific, Singapore, 238pp.

    Book  Google Scholar 

  • Shutts, G., 2005. A kinetic backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc., 131, 3079–3102.

    Article  Google Scholar 

  • Swinbank, R. and R.J. Purser, 2006. Fibonacci grids: A novel approach to global modelling. Q. J. R. Meteorol. Soc., 132, 1769–1793.

    Article  Google Scholar 

  • Szunyogh, I., Z. Toth, R.E. Morss, S.J. Majumdar, B.J. Etherton and C.H. Bishop, 2000. The effect of targeted dropsonde observations during the 1999 winter storm reconnaissance program. Mon. Weather Rev., 128, 3520–3537.

    Article  Google Scholar 

  • Toth, Z. and E. Kalnay, 1993. Ensemble forecasting at NMC – the generation of perturbations. Bull. Amer. Meteorol. Soc., 74, 2317–2330.

    Article  Google Scholar 

  • Trémolet, Y., 2007. Model-error estimation in 4D-Var. Q. J. R. Meteorol. Soc., 133, 1267–1280.

    Article  Google Scholar 

  • Wang, X., D.M. Barker, C. Snyder and T.M. Hamill, 2008a. A hybrid ETKF-3DVAR data assimilation for the WRF model. Part I: Observing system simulation experiment. Mon. Weather Rev., 136, 5116–5131.

    Google Scholar 

  • Wang, X., D.M. Barker, C. Snyder and T.M. Hamill, 2008b. A hybrid ETKF-3DVAR data assimilation for the WRF model. Part II: Real observation experiments. Mon. Weather Rev., 136, 5132–5147.

    Google Scholar 

  • Wang, X. and C.H. Bishop, 2003. A comparison of Breeding and Ensemble Transform Kalman Filter Ensemble Forecast Schemes. J. Atmos. Sci., 60, 1140–1158.

    Article  Google Scholar 

  • Wu, W-S., R.J. Purser and D.F. Parrish, 2002. Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Weather Rev., 130, 2905–2916.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Swinbank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Swinbank, R. (2010). Numerical Weather Prediction. In: Lahoz, W., Khattatov, B., Menard, R. (eds) Data Assimilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74703-1_15

Download citation

Publish with us

Policies and ethics