Skip to main content

Constitutive Secondary Plant Metabolites and Soil Fungi: Defense Against or Facilitation of Diversity

  • Chapter
Secondary Metabolites in Soil Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 14))

  • 2906 Accesses

In general, we assign the term secondary metabolites to low molecular weight compounds produced by living organisms that apparently lack life-sustaining functions. Instead, they are assumed to contribute to the producing organism’s survival in the ecosystem. By contrast, primary metabolites are practically indispensable (Hartmann 1996). The congruence of apparent accumulation of secondary metabolites in those organisms lacking an immune system, such as plants, fungi, or invertebrates, additionally supports the notion that the main function of these originally classified as waste products metabolites is defense against pathogens and predators. Besides, there exist also morphological defenses, such as cutin armor, thorns, or spines (Rubinstein 1992; Gershenzon 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal AA, Tuzun S, Bent E (1999) Induced plant defenses against pathogens and herbivores. APS, St Paul

    Google Scholar 

  • Arnold AE, Herre AE (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological patterns and process in Theobroma cacao. Mycologia 95:388–398

    Article  Google Scholar 

  • Asiegbu FO (2000) Adhesion and development of the root rot fungus (Heterobasidion annosum) on conifer tissues: effects of spore and host surface constituents. FEMS Microbiol Ecol 33:101–110

    Article  PubMed  CAS  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Barz W (1997) Phytoalexins. In: Hartleb H, Heitefuss R, Hoppe H-H (eds) Resistance of crop plants against fungi. Fischer, Jena, pp 183–201

    Google Scholar 

  • Berenbaum MR (1983) Coumarins and caterpillars: a case for coevolution. Science 201:532–534

    Article  Google Scholar 

  • Berenbaum MR, Zangerl AR (1996) Phytochemical diversity: adaptation or random variation. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in biological interactions. Plenum, New York, pp 1–24

    Google Scholar 

  • Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977

    Article  Google Scholar 

  • Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473

    Article  Google Scholar 

  • Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573

    Article  Google Scholar 

  • Bever JD Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecologicl tale of why. Bioscience 51:923–931

    Article  Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    Article  PubMed  Google Scholar 

  • Bohlmann F, Burkhardt T, Zdero C (1973) Naturally occurring polyacetylenes. Academic, London

    Google Scholar 

  • Bohlmann J, Gershenzon J, Aubourg S (2000) Biochemical, molecular genetic and evolutionary aspects of defense related terpenoids mechanisms in confers. In: Romeo JT, Ibrahim R, Varin L, De Luca V (eds) Evolution of metabolic pathways. Pergamon, Amsterdam, pp 109–150

    Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organization and biochemistry. Physiol Plant 94:194–208

    Article  Google Scholar 

  • Brader G, Vajrodaya S, Greger H, Bacher M, Kalchhauser H, Hofer O (1998) Bisamides; lignans, triterpenes, and insecticidal cyclopenta[b]benzofurans from Aglaia species. J Nat Prod 61:1482–1490

    Article  PubMed  CAS  Google Scholar 

  • Brimecombe MJ, De Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial communities. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substance at the soil–plant interface. Dekker, New York, pp 95–104

    Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Bryant JP, Chapin FS III, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Buschmann H, Rodriguez MX, Tohme J, Beeching JR (2000) Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Ann Bot 86:1153–1160

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) Toxicology rethinks its central belief. Nature 421:691–692

    Article  PubMed  CAS  Google Scholar 

  • Callaway R (1995) Positive interactions among plants. Bot Rev 61:306–349

    Article  Google Scholar 

  • Carter JP, Spink J, Cannon PF, Daniels MJ, Osbourn AE (1999) Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Appl Environ Microbiol 65:3364–3372

    PubMed  CAS  Google Scholar 

  • Cates RG (1996) The role of mixtures and variation in the produxtion of terpenoids in conifer–insect–pathogen interactions. In: Romei JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions. Plenum, New York, pp 179–216

    Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S90–S127

    Article  Google Scholar 

  • Coley PD (1987) Effects of plant growth rate and leaf lifetime on the amount and type of antiherbivore defense. Oecologia 74:531–536

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  PubMed  CAS  Google Scholar 

  • Czárán TL, Hoekstra RF, Pagie L (2001) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA 99:786–790

    Article  CAS  Google Scholar 

  • Deacon J (1997) Modern mycology. 3rd edn. Blackwell, Oxford

    Google Scholar 

  • de Bruxelles GL, Roberts MR (2001) Signals regulating multiple responses to wounding and herbivores. Crit Rev Plant Sci 20:487–521

    Article  Google Scholar 

  • Demain AL (1996) Fungal secondary metabolism: regulation and function. In: Sutton B (ed) A century of mycology. Cambridge University Press, Cambridge, pp 233–254

    Google Scholar 

  • Desikan R, Hancock J, Neill S (2005) Reactive oxygen species as signaling molecules. In: Smirnoff (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 169–196

    Chapter  Google Scholar 

  • Dethier VG (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8:33–54

    Article  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  PubMed  CAS  Google Scholar 

  • Ehlers BK, Thompson J (2004) Do co-occurring plant species adapt to one another? The response of Bromus erectus to the presence of different Thymus vulgaris chemotypes. Oecologia 141:511–518

    Article  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42

    Article  CAS  Google Scholar 

  • Farrell BD, Mitter C (1993) Phylogenetic determinants of insect/plant community diversity. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 253–266

    Google Scholar 

  • Farrell BD, Dussourd DE, Mitter C (1991) Escalation of plant defense: do latex and resin canals spur plant diversification? Am Nat 138:881–900

    Article  Google Scholar 

  • Feeny P (1975) Biochemical coevolution between plants and their insect herbivores. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 3–19

    Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RL (eds) Biochemical interactions between plants and insects. Plenum, New York, pp 1–40

    Google Scholar 

  • Felton GW, Korth KL, Bi JL, Wesley SV, Huhman DV, Mathews MC, Murphy JB, Lamb C, Dixon RA (1999) Inverse relationship between systemic resistance of plants to micro-organisms and to insect herbivory. Curr Biol 9:317–320

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Firn RD, Jones CG (1996) An explanation of secondary metabolite “redundancy”. In: Romeo TJ, Saundes JA, Barbosa P (eds) Phytochemical diversity and redundancy in biological interactions. Plenum, New York, pp 295–312

    Google Scholar 

  • Firn RD, Jones CG (2003) Natural products—a simple model to explain chemical diversity. Nat Prod Rep 20:382–391

    Article  PubMed  CAS  Google Scholar 

  • Firn RD, Jones CG (2006) Response to Pichersky et al.: Correcting a misconception about the screening hypothesis. Trends Plant Sci 11:422

    Article  CAS  Google Scholar 

  • Fliegmann J, Schröder G, Schanz S, Britsch L, Schröder J. (1992) Molecular analysis of chalcone and dihydropinosylvine synthase from scots pine, and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol 18:489–503

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current state of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Foley WJ, Moore BD (2005) Plant secondary metabolites and vertebrate herbivores—from physiological regulation to ecosystem function. Curr Opin Plant Biol 8:430–435

    Article  PubMed  CAS  Google Scholar 

  • Foyer CF, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel GS (1959) The raison d’être of secondary plant substances. Science 129:1466–1470

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Pichersky E (2005) Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 8:242–248

    Article  PubMed  CAS  Google Scholar 

  • Futuyma D (1976) Food plant specialization and environmental predictability in Lepidoptera. Am Nat 110:285–292

    Article  Google Scholar 

  • Futuyma D (2000) Some current approaches on the evolution of plant–herbivore interactions. Plant Species Biol 15:1–19

    Article  Google Scholar 

  • Gershenzon J (2002) Secondary metabolites and plant defense. In: Taiz L, Zeiger E (eds) Plant physiology, 3rd edn. Sinauer, Sunderland, pp 283–308

    Google Scholar 

  • Govaerts R (2001) How many species of seed plants are there? Taxon 50:1085–1090

    Article  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signalling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  PubMed  CAS  Google Scholar 

  • Grace SC (2005) Phenolics as antioxidants. In: Smirnoff (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 141–168

    Chapter  Google Scholar 

  • Gräfe U (1992) Biochemie der Antibiotika. Spektrum, Heidelberg

    Google Scholar 

  • Grayer R, Harborne JB (1994) A survey of antifungal compounds from higher plants, 1992–1993. Phytochemistry 37:19–42

    Article  CAS  Google Scholar 

  • Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21:273–322

    Article  CAS  Google Scholar 

  • Hartmann T (1986) Diversity and variability of plant secondary metabolism: a mechanistic view. Entomol Exp Appl 80:177–188

    Article  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or to defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Hilker M, Meiners T (2002) Induction of plant responses to oviposition and feeding by herbivorous arthropods: a comparison. Entomol Exp Appl 104:181–192

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Über neue Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie. Arb Dtsch Landwirtsch Ges 98:57–78

    Google Scholar 

  • Ho JAA, Durst RA (2003) Detection of fumonisin B1: comparison of flow-injection liposome immunoanalysis with high-performance liquid chromatography. Anal Biochem 312:7–13

    Article  PubMed  CAS  Google Scholar 

  • Holloway PJ (1982) The chemical constitution of plant cutins. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic, London, pp 45–85

    Google Scholar 

  • Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9:529–533

    Article  PubMed  CAS  Google Scholar 

  • Homans AL, Fuchs A (1970) Direct bioautography on thin-layer chromatograms for detecting fungitoxic substances. J. Chromatogr 51:242–245

    Article  Google Scholar 

  • Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Monographs in population biology 32. Princeton University Press, Princeton

    Google Scholar 

  • Iason GR, Lennon JJ, Pakeman RJ, Thoss V, Beaton JK, Sim DA, Elston DA (2005) Does chemical composition in individual scots pine trees determine the biodiversity of their associated ground vegetation?. Ecol Lett 8:364–369

    Article  Google Scholar 

  • Ikediugwu FEO (1976) The interface in hyphal interference by Peniophora gigantea against Heterobasidium annnosum. Trans Br Mycol Soc 66:291–296

    Article  Google Scholar 

  • Ikediugwu FEO, Webster J (1970) Hyphal interference in a range of coprophilous fungi. Trans Br Mycol Soc 54:205–210

    Article  Google Scholar 

  • Jarvis BB (2000) The role of natural products in evolution. In: Romeo JT, Ibrahim R, Varin L, De Luca V (eds) Evolution of metabolic pathways. Pergamon, Amsterdam, pp 1–24

    Google Scholar 

  • Jarvis BB, Miller JD (1996) Natural products, complexity and evolution. In: Romei JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions. Plenum, New York, pp 265–293

    Google Scholar 

  • Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino RJ, Hall R, Kopka J, Lane GA Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SG, Paton NW, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, Kell D (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol 22:1601–1606

    Article  PubMed  CAS  Google Scholar 

  • Jones CG, Firn RD (1991) On the evolution of plant secondary chemical diversity. Philos Trans R Soc Lond Ser B 333:273–280

    Article  Google Scholar 

  • Jones CG, Lawton JH (1991) Plant chemistry and insect species richness of British umbellifers. J Anim Ecol 60:767–777

    Article  Google Scholar 

  • Jose S (2002) Black walnut allelopathy: current state of science. In: Inderjit, Mallik AU (eds) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser, Basel, pp 149–172

    Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Google Scholar 

  • Kemp MS (1978) Falcarindiol—antifungal polyacetylene from Aedopodium podagraria. Phytochemistry 17:1002

    Article  CAS  Google Scholar 

  • Kerner von Marilaun A (1890) Pflanzenleben, vol 1. Verlag des bibliographischen Instituts, Leipzig

    Google Scholar 

  • Kerr B, Riley MA, Feldman MW, Bohannan JM (2002) Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418:171–174

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  PubMed  CAS  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  PubMed  Google Scholar 

  • Langenheim JH (1994) Higher plan terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  CAS  Google Scholar 

  • Langenheim JH (2003) Plant resins. Timber, Portland

    Google Scholar 

  • Lindahl BO, Taylor AFS, Finlay RD (2002) Defining nutritional constrainst on carbon cycling in boreal forests—towards a less phytocentric perspective. Plant Soil 242:123–135

    Article  CAS  Google Scholar 

  • Loomis WE (1932) Growth-differentiation balance vs carbohydrate-nitrogen ratio. Proc Am Soc Hortic Sci 29:240–245

    CAS  Google Scholar 

  • Loomis WE (1953) Growth and differentiation—an introduction and summary. In: Loomis WE (ed) Growth and differentiation in plants. Iowa State College Press, Ames, pp 1–17

    Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Proc Natl Acad Sci USA 411:937–940

    CAS  Google Scholar 

  • Maleck K, Dietrich RA (1999) Defense on multiple fronts: how do plants cope with animal diversity. Trends Plant Sci 4:215–219

    Article  PubMed  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: mew functions for an old enzyme. Phytochemistry 60:551–565

    Article  PubMed  CAS  Google Scholar 

  • McKey D (1974) Adaptive patterns in alkaloid physiology. Am Nat 108:305–320

    Article  Google Scholar 

  • McKey D (1979) The distribution of secondary metabolites in plants. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 55–133

    Google Scholar 

  • Mendelsohn R, Balick M (1995) The value of undiscovered pharmaceuticals in tropical forests. Econ Bot 49:223–228

    Google Scholar 

  • Mendgen K, Deising H (1993) Infection structures of fungal plant pathogens. New Phytol. 124:193–213

    Article  Google Scholar 

  • Metting FB (1993) Soil microbial ecology. Applications in agricultural and environmental management. Dekker, New York

    Google Scholar 

  • Naigre R, Kalck P, Rogues C, Roux I, Michel G (1996) Comparison of antimicrobial properties of monoterpenes and their carbonylated products. Planta Med 62:275–277

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  PubMed  CAS  Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  PubMed  CAS  Google Scholar 

  • Okubara PA, Paulitz TC (2005) Root defense responses to fungal pathogens. Plant Soil 274:215–226

    Article  CAS  Google Scholar 

  • Osbourn AE, Qi X, Townsend B, Qin B (2003) Dissecting plant secondary metabolism—constitutive chemical defenses in cereals. New Phytol 159:101–108

    Article  CAS  Google Scholar 

  • Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E, Sharkey TD, Gershenzon J (2006) Plant volatiles: a lack of function or a lack of knowledge? Trends Plant Sci 11:421

    Article  PubMed  CAS  Google Scholar 

  • Rahouti M, Steiman R, Seigle-Murandi F, Christov LP (1999) Growth of 1044 strains and species of fungi on 7 phenolic lignin model compounds. Chemosphere 38:2549–2559

    Article  CAS  Google Scholar 

  • Rapp RA, Wendel JE (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    Article  PubMed  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four-hundred-million-year old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    Article  PubMed  CAS  Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 1–55

    Google Scholar 

  • Rhoades DF, Cates RG (1976) Towards a general theory of plant antiherbivore chemistry. In: Wallace JW, Mansell RL (eds) Biochemical interactions between plants and insects. Plenum, New York, pp 168–213

    Google Scholar 

  • Rodriguez RJ, Redman RS (1997) Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes. In: Tommerup IC, Andrews JH (eds) Advances in botanical research, vol 24. Academic, Amsterdam, pp 169–193

    Google Scholar 

  • Rosenthal GA, Berenbaum MR (eds) (1992) Herbivores: their interactions with plant secondary metabolites. Academic, San Diego

    Google Scholar 

  • Rubinstein B (1992) Similarities between plants and animals for avoiding predation and disease. Physiol Zool 65:473–492

    Google Scholar 

  • Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280

    Article  PubMed  CAS  Google Scholar 

  • Sanders WB (2001) Lichens: the interface between mycology and plant morphology. Bioscience 51:1025–1035

    Article  Google Scholar 

  • Sauter H, Steglich W, Anke T (1999) Strobilurins: evolution of a new class of active substances. Angew Chem Int Ed 38:1328–1349

    Article  Google Scholar 

  • Scheffer RP (1991) Role of toxins in evolution and ecology of plant pathogenic fungi. Experientia 47:804–811

    Article  CAS  Google Scholar 

  • Schimel JP, Cates RG, Ruess R (1998) The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry 42:221–234

    Article  CAS  Google Scholar 

  • Schmidt SK, Ley RE (1999) Microbial competition and soil structure limit the expression of allelochemicals in nature. In: Inderjit, Dakshini KM, Foy CL (eds) Principles and practice in plant ecology. Allelochemical interactions. CRC, Boca Raton, pp 339–351

    Google Scholar 

  • Schröder J (2000) The family of chalcone synthase-related proteins: functional diversity and evolution. In: Romeo JT, Ibrahim R, Varin L, De Luca V (eds) Evolution of metabolic pathways. Pergamon, Amsterdam, pp 55–89

    Google Scholar 

  • Schwab W (2003) Metabolome diversity: too few genes, too many metabolites. Phytochemistry 62:837–849

    Article  PubMed  CAS  Google Scholar 

  • Scott AC, Stephenson J, Chaloner WG (1992) Interaction and coevolution of plants and arthropods during Palaeozoic and Mesozoic. Philos Trans R Soc Lond Ser B 335:129–165

    Article  Google Scholar 

  • Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of a root-infecting fungus. Nature 431:582–586

    Article  PubMed  CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defence. Curr Opin Plant Biol 6:365–371

    Article  PubMed  CAS  Google Scholar 

  • Sinkkonen A (2003) A model describing chemical interference caused by decomposing residues at different densities of growing plants. Plant Soil 250:315–322

    Article  CAS  Google Scholar 

  • Soledade M, Pedras C, Nycholat CM, Montaut S, Xu Y, Khan AQ (2002) Chemical defense of crucifers: elicitation and metabolism of phytoalexins and indol-3-acetonitrile in brown mustard and turnip. Phytochemistry 59:611–625

    Article  Google Scholar 

  • Somerville C, Somerville S (1999) Plant functional genomics. Science 285:380–383

    Article  PubMed  CAS  Google Scholar 

  • Southwood TRE (1985) Interactions of plants with animals: patterns and processes. Oikos 44:5–11

    Article  Google Scholar 

  • Souto XC, Pellisier F (2002) Feedback mechanisms in the chemical ecology of plants: role of soil microorganisms. In: Inderjit, Mallik AU (eds) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser, Basel, pp 89–98

    Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypothesis. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Stratmann JW (2003) Long distance run in the wound response—jasmonic acid is pulling ahead. Trends Plant Sci. 8:247–250

    Article  PubMed  CAS  Google Scholar 

  • Taga ME, Bassier BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100:14549–14554

    Article  PubMed  CAS  Google Scholar 

  • Talbot NJ, Kershaw MJ, Wakley GE, de Vries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985–999

    Article  PubMed  CAS  Google Scholar 

  • Thines E, Anke H, Weber RWS (2004) Fungal secondary metabolites as inhibitors of infection-related morphogenesis in phytopathogenic fungi. Mycol Res 108:14–25

    Article  PubMed  CAS  Google Scholar 

  • Tilman D (1982) Resource competiton and community structure. Monographs in population biology 17. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competion, invasion, and community assembly. Proc Natl Acad Sci USA 101:10854–10861

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 13–25

    Google Scholar 

  • Tuomi K, Niemelä P, Chapin FS III, Bryant JP, Sirén S (1988) Defensive responses of trees in relation to their carbon/nutrient balance. In: Mattson JW, Levieux J, Barnard-Dagan C (eds) Mechanisms of woody plant defenses against insects: search for pattern. Springer, New York, pp 57–52

    Google Scholar 

  • Tuomi J, Fagerstrom T, Niemelä P (1991) Carbon allocation phenotypic plasticity, and induced defenses. In: Tallamy DW, Raupp MJ (eds) Phytochemical induction by herbivores. Wiley, New York, pp 85–104

    Google Scholar 

  • Vajrodaya S, Bacher M, Greger H, Hofer O (1998) Organ-specific chemical differences in Glycosmis trichanthera. Phytochemistry 48:897–902

    Article  CAS  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutogolis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • van der Putten WH (2003) Plant defense belowground and spatiotemporal processes in natural vegetation. Ecology 84:2269–2280

    Article  Google Scholar 

  • Veluri R, Weir TL, Bais HP, Stermitz FR, Vivanco JM (2004) Phytotoxic and antimicrobial activities of catechin derivatives. J Agric Food Chem 52:1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems. Linking the aboveground and belowground components. Monographs in population biology 34. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setäla H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Wendt KU, Schulz GE, Corey EJ, Liu DR (2000) Enzyme mechanisms for polycyclic triterpene formation. Angew Chem Int Ed 39:2812–2833

    Article  CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant defense and their role in the defense against herbivores and pathogens. Curr Opin Plant Biol 5:300–307

    Article  PubMed  CAS  Google Scholar 

  • Xing M-Z, Zhang X-Z, Sun Z-L, Zhang H-Y (2003) Perylenequinones act as broad-spectrum fungicides by generating reactive oxygen species both in the dark and light. J Agric Food Chem 51:7722–7724

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hadacek, F. (2008). Constitutive Secondary Plant Metabolites and Soil Fungi: Defense Against or Facilitation of Diversity. In: Karlovsky, P. (eds) Secondary Metabolites in Soil Ecology. Soil Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74543-3_10

Download citation

Publish with us

Policies and ethics