Skip to main content
  • 1993 Accesses

Biogenetic Outline. The basal, central building block for any biosynthesis of terpenoids (isoprenoids), isopentenyl diphosphate, may be generated in plants by two different pathways, the cytosolic mevalonate and the plastidic methylerythritol (deoxyxylulose) pathways. The cytosolic pathway was assumed to provide the precursors for sesquiterpenoids and triterpenoids/steroids, the plastidic one for mono-, di-, and tetraterpenoids. However, it has been proven recently that this strict separation of both pathways does not exist. Cross-talk between both path-ways has been discovered (De-Eknamkul and Potduang 2003; Bartram et al. 2006 and references therein). The transformation of isopentenyl diphosphate to dimethylallyl diphosphate is catalyzed by a corresponding isomerase. A condensation of both isomers catalyzed by a plastidic prenyltransferase leads to the common precursor of all monoterpenoids (C10), geranyl diphosphate (“head-to-tail” condensation). Condensation of geranyl diphosphate and another isopentenyl diphosphate generates farnesyl diphosphate (C15), the common precursor of all sesquiterpenoids. Farnesyl diphosphate in turn acts as a prenyl donor for isopentenyl diphosphate to form geranylgeranyl diphosphate (C20), the common precursor of all diterpenoids. In contrast to all these “head-to-tail” condensations, “head-to-head” condensation of two molecules of farnesyl diphosphate is responsible for the formation of squalene (C30), the common precursor of all triterpenoids. The analogous reaction of two molecules of geranylgeranyl diphosphate yields phytoene (C40), the common precursor of all tetraterpenoids. Almost all of these precursors are generated as all-trans isoprenoids (exception: phytoene is yielded predominantly in the 15-cis configurated form). Nevertheless, they may change their configuration in the course of specific pathways leading to certain secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Gwad MM, El-Amin SM, El-Sayed MM, Refahy LA, Sabry WA (1997) Molluscidal saponins from Cestrum parqui. Al-Azar J Pharmaceut Sci 20:80–84

    CAS  Google Scholar 

  • Abe F, Nagafuji S, Okawa M, Kinjo J (2006) Trypanocidal constituents in plants 6. Minor withanolides from the aerial parts of Physalis angulata. Chem Pharm Bull 54:1226–1228

    PubMed  CAS  Google Scholar 

  • Abou-Douh AM (2002) New withanolides and other constituents from the fruits of Withania somnifera. Arch Pharm Pharm Med Chem 6:267–276

    Google Scholar 

  • Aburjai T, Bernasconi S, Manzocchi L, Pelizzoni F (1996) Isolation of 7-dehydrocholesterol from cell cultures of Solanum malacoxylon. Phytochemistry 43:773–776

    CAS  Google Scholar 

  • Aburjai T, Al-Khalil S, Abuirjeie M (1998) Vitamin D3 and its metabolites in tomato, potato, egg plant and zucchini leaves. Phytochemistry 49:2497–2499

    CAS  Google Scholar 

  • Adam G, Chiên NQ, Khôi NH (1981) Dunawithanin A and B, first plant withanolide glycosides from Dunalia australis. Int Conf Chem Biotechnol Biol Act Nat Prod [Proc] 1st / 3. Bulg Acad Sci, Sofia, Bulgaria, pp 191–195

    Google Scholar 

  • Adam G, Chiên NQ, Khôi NH (1984) Dunawithanins A and B, the first withanolide glycosides from Dunalia australis. Phytochemistry 23:2293–2297

    CAS  Google Scholar 

  • Adesina SK (1985) Constituents of Solanum dasyphyllum fruit. J Nat Prod 48:147

    CAS  Google Scholar 

  • Agra M de F, Bhattacharyya J (1999) Ethnomedicinal and phytochemical investigation of the Solanum species in the Northeast of Brazil. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – Advances in taxonomy and utilization, Royal Botanic Gardens, Kew, UK, pp 341–343

    Google Scholar 

  • Ahmad VU, Baqai FT, Fatima I, Ahmad R (1991) A spirostanol glycoside from Cestrum diurnum. Phytochemistry 34:511–515

    Google Scholar 

  • Ahmad VU, Baqai FT, Ahmad R (1993) A tigogenin pentasaccharide from Cestrum nocturnum. Phytochemistry 30:3057–3061

    Google Scholar 

  • Ahmad VU, Baqai FT, Ahmad R (1995) A diosgenin tetrasaccharide from Cestrum nocturnum. Z Naturforsch 50b:1104–1110

    Google Scholar 

  • Ahmed AH, Ramzy MR (1997) Laboratory assessment of the molluscidal and cercaricidal activities of the Egyptian weed, Solanum nigrum L. Ann Trop Med Parasit 91:931938

    Google Scholar 

  • Al-Babili S, Hugueney P, Schledz M, Welsch R, Frohnmeyer H, Laule O, Beyer P (2000) Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett 485:168–172

    PubMed  CAS  Google Scholar 

  • Almeida LB, Penteado MVC (1988) Carotenoids and pro-vitamin A value of white fleshed Brazilian sweet potatoes (Ipomoea batatas LAM.) J Food Compos Anal 1:341–352

    CAS  Google Scholar 

  • Alves AC, Prista LN, Ferreira MA (1961) Isolation of a glycoside from Solanum wrightii. Garcia de Orta 9:713–720

    CAS  Google Scholar 

  • Alzerreca A, Hart G (1982) Molluscicidal steroid glycoalkaloids possessing stereoisomeric spirosolane structures. Toxicol Lett 12:151–155

    PubMed  CAS  Google Scholar 

  • Anjaneyulu ASR, Rao DS, Lequesno PW (1998) Withanolides, biologically active natural steroidal lactones: A review. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 20 (part F). Elsevier, Amsterdam, NL, pp 135–261

    Google Scholar 

  • Antonious GF, Kochhar TS (2003) Zingiberene and curcumene in wild tomato. J Envir Sci Health B38:489–500

    CAS  Google Scholar 

  • Armer CA (2004) Colorado potato beetle toxins revisited: Evidence the beetle does not sequester host plant glycoalkaloids. J Chem Ecol 30:883–888

    PubMed  CAS  Google Scholar 

  • Arthan D, Svasti J, Kittakoop P, Pittayakhachonwut D, Tanticharoen M, Thebtaranonth Y (2002) Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum. Phytochemistry 59:459–463

    PubMed  CAS  Google Scholar 

  • Arthan D, Kittakoop P, Esen A, Svasti J (2006) Furostanol glycoside 26-O-β-glucosidase from the leaves of Solanum torvum. Phytochemistry 67:27–33

    PubMed  CAS  Google Scholar 

  • Atta-ur-Rahman, Yousaf M, Gul W, Qureshi S, Choudhary MI, Voelter W, Hoff A, Jens F, Naz A (1998a) Five new withanolides from Withania coagulans. Heterocycles 48:1801–1811

    CAS  Google Scholar 

  • Atta-ur-Rahman, Choudhary MI, Yousaf M, Gul W, Qureshi S (1998b) New withanolides from Withania coagulans. Chem Pharm Bull 46:1853–1856

    CAS  Google Scholar 

  • Atta-ur-Rahman, Shabbir M, Yousaf M, Qureshi S, E-Shahwar D, Naz A, Choudhary MI (1999) Three withanolides from Withania coagulans. Phytochemistry 52:1361–1364

    CAS  Google Scholar 

  • Atta-ur-Rahman, Dur-e-Shahwar D, Naz A, Choudhary MI (2003) Withanolides from Withania coagulans. Phytochemistry 63:387–390

    CAS  Google Scholar 

  • Austin DF (2004) Florida Ethnobotany. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Baccarini A, Bertossi F, Bagni N (1965) Carotenoid pigments in the stem of Cuscuta australis. Phytochemistry 4:349–351

    CAS  Google Scholar 

  • Baggesgaard-Rasmussen H, Boll PM (1962) Soladulcamarine, the alkaloidal glycoside of Solanum dulcamara. Acta Chem Scand 12:802–806

    Google Scholar 

  • Bah M, Gutiérrez DM, Escobedo C, Mendoza S, Rojas JI, Rojas A (2004) Methylprotodioscin from the Mexican medical plant Solanum rostratum (Solanaceae). Biochem Syst Ecol 32:197–202

    CAS  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    PubMed  CAS  Google Scholar 

  • Balashova IT, Verderevskaya TD, Kintya PK (1984) Antiviral activity of steroid glycosides on a model of tobacco mosaic virus (TMV). Sel’skokhozyaistvennaya Biol 83–86

    Google Scholar 

  • Balmannya (1874) Versuche über die Wirkung des Solanins und Solanidins. Göttingen; fide Husemann et al. (1884)

    Google Scholar 

  • Baqai FT, Ali A, Ahmad VU (2001) Two new spirostanol glycosides from Cestrum parqui. Helv Chim Acta 84:3350–3356

    CAS  Google Scholar 

  • Barger LG, Fraenkel-Conrat HL (1936) Alkaloids from Solanum pseudocapsicum. J Chem Soc 1537–1542

    Google Scholar 

  • Bartram S, Jux A, Gleixner G, Boland W (2006) Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima beans leaves. Phytochemistry 67:1661–1672

    PubMed  CAS  Google Scholar 

  • Baup M (1826) Extrait d’une lettre sur plusieurs nouvelles substances. Ann Chim Phys 31:108–109

    Google Scholar 

  • Begley MJ, Crombie L, Ham PJ, Whiting DA (1976) A new class of natural steroids, with ring D aromatic, from Nicandra physaloides (Solanaceae). X-Ray analysis of nic-10, and the structures of nic-1 (‘nicandrenone’), -12, and -17. J Chem Soc Perkin I:304–307

    Google Scholar 

  • Bennett RD, Lieber ER, Heftmann E (1967) Biosynthesis of neotigogenin and ∆16-5α-pregnen-3β-ol-20-one from cholesterol in Lycopersicon pimpinellifolium. Phytochemistry 6:837–840

    CAS  Google Scholar 

  • Bergenstraahle A, Borgaa P, Jonsson LMV (1996) Sterol composition and synthesis in potato tuber disks in relation to glycoalkaloid synthesis. Phytochemistry 41:155–161

    CAS  Google Scholar 

  • Bhatnagar JK, Puri RK (1974) Solanum platanifolium, a new source of solasodine. Lloydia (later: J Nat Prod) 37:318–319

    CAS  Google Scholar 

  • Bheemasankara Rao C, Suseela K, Subba Rao PV, Gopala Krishna P, Subba Raju GV (1984) Chemical examination of some Indian medicinal plants. Indian J Chem 23B:787–788

    Google Scholar 

  • Bianchi E, Girardi F, Diaz F, Sandoval R, Gonzales M (1963) Components of the leaves and fruit of Cestrum parqui: Tigogenin, digalogenin, digitogenin, and ursolic acid. I. Ann Chim (Rome) 53:1761–1778

    CAS  Google Scholar 

  • Birch AJ, Massy-Westropp RA, Wright SE, Kubota T, Matsuura T, Sutherland MD (1954) Ipomeamarone and ngaione. Chem Ind (London) 902

    Google Scholar 

  • Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyzes C-6-oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96:1761–1766

    PubMed  CAS  Google Scholar 

  • Bite P, Shabana MM (1972) Solanum glycosides. VIII. Solashabanine and solaradinine. Acta Chim Acad Sci Hung 73:361–362

    CAS  Google Scholar 

  • Bizimenyera ES (2003) Acute poisoning of Friesian heifers by Solanum macrocarpon L. ssp. dasyphyllum. Vet Hum Toxicol 45:222–223

    PubMed  CAS  Google Scholar 

  • Bloch CB, De Wit PJGM, Kuc J (1984) Elicitation of phytoalexins by arachidonic and eicosapentaenoic acids: a host survey. Physiol Plant Pathol 25:199–208

    CAS  Google Scholar 

  • Bohlmann F, Zdero C (1978) New sesquiterpenes and acetylenes from Athanasia and Pentzia species. Phytochemistry 17:1595–1599

    CAS  Google Scholar 

  • Bohlmann J, Stauber EJ, Krock B, Oldham NJ, Gershenzon J, Baldwin IT (2002) Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry 60:109–116

    PubMed  CAS  Google Scholar 

  • Böhm A, Jenett-Siems K, Kaloga M, Witte L, Eich E (1999) Bonaseminols, a novel type of benzofurans from Bonamia semidigyna (Convolvulaceae). Book of abstracts: Joint Meeting of American Society of Pharmacognosy, Association Française pour l’Enseignement et la Recherche en Pharmacognosie, Gesellschaft für Arzneipflanzenforschung, Phytochemical Society of Europe, July 26–30, 1999. Leiden University, Division of Pharmacognosy, P 222

    Google Scholar 

  • Bohs L (2006) The genus Solanum: views from the trees and the roots. Presentation, VI International Solanaceae Conference, Solanaceae Genomics Network, and 90th Annual Meeting of the Potato Association of America, Madison, Wisconsin, USA

    Google Scholar 

  • Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17

    Google Scholar 

  • Boland RL (1986) Plants as source if vitamin D3 metabolites. Nutr Rev 44:1–8

    PubMed  CAS  Google Scholar 

  • Boland RL, Skliar MI, Norman AW (1987) Isolation of vitamin D3 metabolites from Solanum malacoxylon leaf extracts incubated with ruminal fluid. Planta Med 53:161–164

    PubMed  CAS  Google Scholar 

  • Boland RL, Skliar MI, Curino A, Milanesi L (2003) Vitamin D compounds in plants. Plant Sci 164:357–369

    CAS  Google Scholar 

  • Boll P, Andersen B (1962) Alkaloidal glycosides from Solanum dulcamara III. Differentiation of geographical strains by means of thin-layer chromatography. Planta Med. 10:421–432

    CAS  Google Scholar 

  • Bolt AJN, Purkis SW, Sadd JS (1983) A damascenone derivative from Nicotiana tabacum. Phytochemistry 22:613–614

    CAS  Google Scholar 

  • Boyd MR, Wilson BJ (1972) Isolation and characterization of 4-ipomeanol, a lung-toxic furanosesquiterpenoid produced by sweet potatoes (Ipomoea batatas). J Agric Food Chem 20:428–430

    PubMed  CAS  Google Scholar 

  • Bramley PM (1997) Isoprenoid metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, San Diego, USA, pp 417–437

    Google Scholar 

  • Breitenbach J, Sandmann G (2005) ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoids biosynthetic pathway to lycopene. Planta 220:785–793

    PubMed  CAS  Google Scholar 

  • Breyer-Brandwijk MG (1929) Bull Sci Pharmacol 36:541; fide Prelog & Jeger (1953)

    CAS  Google Scholar 

  • Briggs LH, Brooker EG, Harvey WE, Odell AL (1952) Solanum alkaloids. VIII. Solamargine, a new alkaloid from Solanum marginatum. J Soc Chem 3587–3591

    Google Scholar 

  • Briggs LH, Cambie RC, Hoare JL (1961) Solanum alkaloids. XV. Constituents of some Solanum species and a reassessment of solasodamine and solauricine. J Chem Soc 4645–4649

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H, Mercadante AZ, Egeland ES (2004) Carotenoids – Handbook. Birkhäuser Verlag, Basel, CH

    Google Scholar 

  • Brown CR (2005) Antioxidants in potato. Am J Potato Res 82:163–172

    CAS  Google Scholar 

  • Brown GD (1994) The sesquiterpenes of Fabiana imbricata. Phytochemistry 35:425–433

    CAS  Google Scholar 

  • Bukenya ZR, Carasco JF (1999) Ethnobotanical aspects of Solanum L. (Solanaceae) in Uganda. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – Advances in taxonomy and utilization, Royal Botanic Gardens, Kew, UK, pp 345–360

    Google Scholar 

  • Burden RS, Rowell PM, Bailey JA, Loeffler RST, Kemp MS, Brown CA (1985) Debneyol, a fungicidal sesquiterpene from TNV infected Nicotiana debneyi. Phytochemistry 24:2191–2194

    CAS  Google Scholar 

  • Burden RS, Loeffler RST, Rowell PM, Bailey JA, Kemp MS (1986) Cyclodebneyol, a fungitoxic sesquiterpene from TNV infected Nicotiana debneyi. Phytochemistry 25:1607–1608

    CAS  Google Scholar 

  • Burka LT, Kuhnert L, Wilson BJ, Harris TM (1974) 4-Hydroxymyoporone, a key intermediate in the biosynthesis of pulmonary toxins produced by Fusarium solani infected sweet potatoes. Tetrahedron Lett 4017–4020

    Google Scholar 

  • Burka LT, Kuhnert L, Wilson BJ, Harris TM (1977) Biogenesis of lung-toxic furans produced during microbial infection of sweet potatoes (Ipomoea batatas). J Am Chem Soc 99:2302–2305

    PubMed  CAS  Google Scholar 

  • Burka LT, Felice LJ, Jackson SW (1981) 6-Oxodendrolasin, 6-hydroxydendrolasin, 9-oxofarnesol and 9-hydroxyfarnesol, stress metabolites of the sweet potato. Phytochemistry 20:647–652

    CAS  Google Scholar 

  • Burns J, Fraser PD, Bramley PM (2003) Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 62:939–947

    PubMed  CAS  Google Scholar 

  • Buttery RG, Ling LC (1993) Volatile components of tomato fruit and plant parts: Relationship and biogenesis. ACS Sympos Ser No 525, American Chemical Society, Washington, DC, pp 23–34

    Google Scholar 

  • Callow RK, James VHT (1955) Epimerisation at C(25) of steroid sapogenins: Sarsasapogenin, neotigogenin, and sisalagenin. J Chem Soc. 1671–1674

    Google Scholar 

  • Canham PAS, Warren FL (1950a) Saponins.- I. Isolation of gitogenin and digitonin from Cestrum laevigatum. J South African Chem Inst 3:9–12

    CAS  Google Scholar 

  • Canham PAS, Warren FL (1950b) Saponins.- II. Isolation of gitogenin and digitogenin from Cestrum parqui. J South African Chem Inst 3:63–65

    CAS  Google Scholar 

  • Canonica L, Danieli B, Weisz-Vincze I, Ferrari G (1972) Structure of muristerone A, a new phytoecdysone. J Chem Soc, Chem Comm:1060–1061

    Google Scholar 

  • Canonica L, Danieli B, Ferrari G, Krepinsky J, Rainoldi G (1973) Structure of calonysterone, an unsusually modified phytoecdysone. J Chem Soc, Chem Comm:737–738

    Google Scholar 

  • Canonica L, Danieli B, Ferrari G, Krepinsky J, Weisz-Vincze I (1975) A novel method of isolation of phytoecdysones from kaladana seeds. Phytochemistry 14:525–527

    CAS  Google Scholar 

  • Canonica L, Orsini F, Pelizzoni F, Ferrari G, Vecchietti V (1976) Aureoside, a new glycoside from Operculina aurea (Convolvulaceae). Gazz Chim Ital 106:889–894

    CAS  Google Scholar 

  • Canonica L, Pelizzoni F, Ferrari G, Vecchietti V (1977a) Glycosides from Operculina aurea (Convolvulaceae). Isoaureoside and aniseoside. Gazz Chim Ital 107:223–227

    CAS  Google Scholar 

  • Canonica L, Orsini F, Pelizzoni F, Zajotti A, Ferrari G, Vecchietti V (1977b) Glycosides from Operculina aurea (Convolvulaceae). III. New derivatives of ent-3α, 16α 17- and ent-3β, 16β, 17-kauranetriols. Gazz Chim Ital 107:501–502

    CAS  Google Scholar 

  • Canonica L, Danieli B, Ferrari G, Krepinsky J, Haimova M (1977c) New phytoecdysones from kaladana. Structure of muristerone A and kaladasterone. Gazz Chim Ital 107:123–130

    CAS  Google Scholar 

  • Cardeal ZL, Gomes da Silva MDR, Marriott PJ (2006) Comprehensive two-dimensional gas chromatography/mass spectrometric analysis of pepper volatiles. Rapid Commun Mass Spectrom 20:2823–2836

    PubMed  CAS  Google Scholar 

  • Carter CD, Gianfagna TJ, Sacalis JN (1989) Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetle. J Agric Food Chem 37:1425–1428

    CAS  Google Scholar 

  • Chakravarty AK, Dhar TK, Pakrashi SC (1978) Hispigenin, a novel 22βO-spirostane from Solanum hispidum. Tetrahedron Lett 19:3875–3878

    Google Scholar 

  • Chakravarty AK, Saha CR, Pakrashi SC (1979) New spirostane saponins and sapogenins from Solanum hispidum seeds. Phytochemistry 18:902–903

    CAS  Google Scholar 

  • Chakravarty AK, Dhar TK, Pakrashi SC (1980) Solaspigenin and neosolaspigenin, two new spirostane sapogenins from Solanum hispidum. Phytochemistry 19:1249–1251

    CAS  Google Scholar 

  • Chakravarty AK, Mukhopadhyay S, Saha S, Pakrashi SC (1996) A neolignan and sterols in fruits of Solanum sisymbrifolium. Phytochemistry 41:935–939

    CAS  Google Scholar 

  • Cham BE (2000) Anticancer medicinal compositions comprising solasodine glycosides. PCT Int Appl: 51 pp

    Google Scholar 

  • Cham BE, Meares HM (1987) Glycoalkaloids from Solanum sodomaeum are effective in the treatment of skin cancers in man. Cancer Lett 36:111–118

    PubMed  CAS  Google Scholar 

  • Cham BE, Gilliver M, Wilson L (1987) Antitumour effects of glycoalkaloids isolated from Solanum sodomaeum. Planta Med 53:34–36

    PubMed  CAS  Google Scholar 

  • Chamberlain WJ, Schlotzhauer WS, Chortyk OT (1988). Chemical composition of non-smoking tobacco products. J Agric Food Chem 36:48–50

    CAS  Google Scholar 

  • Chamy MC, Garbarino JA, Piovano M, López-Pérez JL, Nicoletti M, Gandolfo R, San Feliciano A (1997) 9-epi-Labdane diterpenoids from Nolana rostrata var. rostrata. Phytochemistry 45:797–800

    CAS  Google Scholar 

  • Chamy MC, Piovano M, Garbarino JA (2002) Diterpenoids from Nolana elegans. Bol Soc Chil Quim 47:367–370

    CAS  Google Scholar 

  • Chen BH, Yang SH, Han LH (1991) Characterization of major carotenoids in water convolvulus (Ipomoea aquatica) by open-column, thin-layer and high-performance liquid chromatography. J Chromatogr 543:147–155

    CAS  Google Scholar 

  • Chen LJ, DeRose EF, Burka LT (2006) Metabolism of furans in vitro: Ipomeanine and 4-ipomeanol. Chem Res Toxicol 19:1320–1329

    PubMed  CAS  Google Scholar 

  • Chintea P, Buliga A, Mihaila M, Oprea M (1998) Effectiveness of some extracts of natural products in controlling pathogenic soil-borne fungi. Practice Oriented Results on Use and Production of Neem-Ingredients and Pheromones VIII, Proceedings of the Workshop, 8th, Hohensolms, Germany, Feb 16–18, pp 107–115

    Google Scholar 

  • Choban IN, Dimoglo AS, Bersuker IB, Balashova IT, Kintya PK (1987) Structure-activity correlations for antiviral properties of steroidal glycosides. FECS Int Conf Chem Biotechnol Biol Act Nat Prod (Proc), 3rd. VCH, Weinheim, Germany, pp 431–435

    Google Scholar 

  • Choi JK, Murillo G, Su BN, Pezzuto JM, Kinghorn AD, Mehta RG (2006) Ixocarpalactone A isolated from the Mexican tomatillo shows potent antiproliferative and apoptotic activity in colon cancer cells. FEBS J 273:5714–5723

    PubMed  CAS  Google Scholar 

  • Choudhary MI, Yousuf S, Nawaz SA, Ahmed S, Atta-ur-Rahman (2004) New cholinesterase inhibiting withanolides from Withania somnifera. Chem Pharm Bull 52:1358–1361

    PubMed  CAS  Google Scholar 

  • Choudhary MI, Nawaz SA, Haq ZuH, Lodhi MA, Ghayur MN, Jalil S, Riaz N, Yousuf S, Malik A, Gilani AH, Atta-ur-Rahman (2005) Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem Biophys Res Commun 334:276–287

    PubMed  CAS  Google Scholar 

  • Choudhary MI, Yousuf S, Samreen, Shah SAA, Ahmed S, Atta-ur-Rahman (2006) Biotransformation of physalin H and leishmanicidal activity of its transformed products. Chem Pharm Bull 54:927–930

    PubMed  CAS  Google Scholar 

  • Christen P (1989) Withanolide – Naturstoffe mit vielversprechendem Wirkungsspektrum. Pharmazie in unserer Zeit 18:129–139

    PubMed  CAS  Google Scholar 

  • Cirigliano AM, Veleiro AS, Oberti JC, Burton G (2002) Spiranoid withanolides from Jaborosa odenelliana. J Nat Prod 65:1049–1951

    PubMed  CAS  Google Scholar 

  • Coelho RM, De Souza MC, Sarragiotto MH (1998) Steroidal alkaloid glycosides from Solanum orbignianum. Phytochemistry 49:893–897

    PubMed  CAS  Google Scholar 

  • Colombano A (1908) On the solanine of the potato plant. Gazz Chim Ital 38:19–37

    CAS  Google Scholar 

  • Coune C (1977) Etude phytochimique des Solanaceae d’Afrique Centrale. II. Les alcaloïdes de Solanum dasyphyllum. Planta Med 31:259–261

    PubMed  CAS  Google Scholar 

  • Coune C, Denoel A (1975) Phytochemical study of the Central African Solanaceae. I. Alkaloids of Solanum dasyphyllum. Planta Med 28:168–171

    PubMed  CAS  Google Scholar 

  • Coy-Barrera CA, Cuca-Suarez LE, Clara IOP (2005) A new steroidal alkaloid, two sterols and a pentacyclic triterpenoid isolated from Solanum cornifolium, section Geminata. Actualidades Biologicas (Medellin, Colombia) 27:131–134

    CAS  Google Scholar 

  • Craig LC, Jacobs WA (1943) Veratrine alkaloids. XX. Further correlations in the veratrine group. The relationship between the veratrine bases and solanidine. J Biol Chem 149:451–464

    CAS  Google Scholar 

  • Cuervo AC, Blunden G, Patel AV (1991) Chlorogenone and neochlorogenone from the unripe fruits of Solanum torvum SWARTZ. Phytochemistry 30: 1339–1341

    CAS  Google Scholar 

  • Curl AL (1964) The carotenoids of green bell peppers. J Agric Food Chem 12:522–524

    CAS  Google Scholar 

  • Czapek F (1925) Biochemie der Pflanzen, vol 3. Verlag von Gustav Fischer, Jena, Germany

    Google Scholar 

  • D’Abrosca B, DellaGreca M, Fiorentino A, Monaco P, Oriano P, Temussi F (2004) Structure elucidation and phytotoxicity of C13 nor-isoprenoids from Cestrum parqui. Phytochemistry 65:497–505

    PubMed  Google Scholar 

  • D’Abrosca B, DellaGreca M, Fiorentino A, Monaco P, Natale A, Oriano P, Zarrelli A (2005) Structural characterization of phytotoxic of terpenoids from Cestrum parqui. Phytochemistry 66:2681–2688

    PubMed  Google Scholar 

  • Darwin SC, Knapp S, Peralta IE (2003) Taxonomy of tomatoes in the Galápagos Islands: Native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodivers 1:29–53

    Google Scholar 

  • Das S, Ganguly SN, Mukherjee KK (1999) Fatty acids and phytochemical components of Ipomoea spp. seeds. Nat Prod Sci 5:121–123

    CAS  Google Scholar 

  • Daunay MC, Lester RN, Gebhardt C, Hennart JW, Jahn M, Frary A, Doganlar S (2001) Genetic resources of eggplant (Solanum melongena L.) and allied species: a new challenge for molecular geneticists and eggplant breeders. In: Van den Berg RG, Barendse GWM, van der Weerden GM, Mariani C (eds) Solanaceae V – advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, The Netherlands, pp 251–274

    Google Scholar 

  • Daunter B, Cham BE (1990) Solasodine glycosides. In vitro preferential cytotoxicity for human cancer cells. Cancer Lett 55:209–220

    PubMed  CAS  Google Scholar 

  • Davies BH, Matthews S, Kirk JTO (1970) The nature and biosynthesis of the carotenoids of different colour varieties of Capsicum annuum. Phytochemistry 9:797–805

    CAS  Google Scholar 

  • De Cassia Meneses Oliveira R, Lima JT, Ribeiro LAA, Silva JLV, Monteiro FS, Assis TS, Agra M de F, Silva TMS, Almeida FRC, Silva BA (2006) Spasmolytic action of the methanol extract and isojuripidine from Solanum asterophorum MART. (Solanaceae) leaves in guinea-pig ileum. Z Naturforsch 61c:799–805

    Google Scholar 

  • De-Eknamkul W, Potduang B (2003) Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62:389–398

    PubMed  CAS  Google Scholar 

  • De Lucca AJ, Bland JM, Vigo CB, Cushion M, Selitrennikoff CP, Peter J, Walsh TJ (2002) CAY-1, a fungicidal saponin from Capsicum sp. fruit. Med Mycol 40:131–137

    PubMed  CAS  Google Scholar 

  • De Lucca AJ, Bland JM, Boue S, Vigo CB, Cleveland TE (2006) Synergism of CAY-1 with amphotericin B and itraconazole. Microbiology 52:285–287

    CAS  Google Scholar 

  • De Marino S, Borbone N, Gala F, Zollo F, Fico G, Pagiotti R, Iorizzi M (2006) New constituents of sweet Capsicum annuum L. fruits and evaluation of their biological activity. J Agric Food Chem 54:7508–7516

    PubMed  CAS  Google Scholar 

  • De Valeri B, Usubillaga A (1989) Sapogenins from Solanum meridense. Phytochemistry 28:2509–2511

    CAS  Google Scholar 

  • Desfosses M (1820) Extrait d’une lettre. J Pharm 6:374–376

    Google Scholar 

  • Desfosses M (1821) Extrait d’une lettre. J Pharm 7:414–417

    Google Scholar 

  • Desjardins AE, Mccormick SP, Corsini DL (1995) Diversity of sesquiterpenes in 46 potato cultivars and breeding selections. J Agric Food Chem 43:2267–2272

    CAS  Google Scholar 

  • Dewick PM (1999) The biosynthesis of C5 – C25 terpenoid compounds. Nat Prod Rep 16:97–130

    CAS  Google Scholar 

  • Dimitriades E, Massy-Westropp RA (1984) The configuration of the sesquiterpenoid 4-hydroxymyoporone (athanagrandione). Phytochemistry 23:1325–1326

    Google Scholar 

  • Dimoglo AS, Choban IN, Bersuker IB, Kintya PK, Balashova NN (1985) Structure-activity correlations for the antioxidant and antifungal properties of steroid glycosides. Bioorg Khim 11:408–413

    PubMed  CAS  Google Scholar 

  • Dominguez XA, Marroquin J, Coronado MM (1975) Ursolic acid and mannitol from Leptoglossis texana. Rev Latinoameric Quim 6:104

    Google Scholar 

  • Döpke W, Sewerin E, Hess U, Nogueiras C (1976) Struktur und Stereochemie eines neuen Steroidsapogenins vom Spirostanoltyp aus Solanum jamaicense. Z Chem 16:104–105

    Google Scholar 

  • Döpke W, Matos N, Duday S (1987) Über den Steroidalkaloid- und Sapogenin-Gehalt von Solanum panduraeforme E.MEY. Pharmazie 42:621–622

    Google Scholar 

  • Dragendorff G (1868) Die gerichtlich-chemische Ermittelung von Giften in Nahrungsmitteln, Luftgemischen, Speiseresten, Körpertheilen etc. Verlag der Kaiserlichen Hofbuchhandlung H. Schmitzdorff, St. Petersburg, Russia, pp 314–317

    Google Scholar 

  • Duke SO, Baerson SR, Dayan FE, Rimando AM, Scheffler BE, Tellez MR, Wedge DE, Schrader KK, Akey DH, Arthur FH, de Lucca AJ, Gibson DM, Harrison HF Jr, Peterson JK, Gealy DR, Tworkoski T, Wilson CL, Morris JB (2003) United States Department of Agriculture – Agricultural Research Service research on natural products for pest management. Pest Manag Sci 59:708–717

    PubMed  CAS  Google Scholar 

  • Duperon R, Thiersault M, Duperon P (1984) High level of glycosylated sterols in species of Solanum and sterol changes during the development of the tomato. Phytochemistry 23:743–746

    CAS  Google Scholar 

  • Edwards EJ, Saint RE, Cobb AH (1998) Is there a link between greening and light-enhanced glycoalkaloid accumulation in potato (Solanum tuberosum L.) tubers ? J Sci Food Agric 76:327–333

    CAS  Google Scholar 

  • Ehmke A, Eilert U (1993) Solanum dulcamara L. (Bittersweet): Accumulation of steroidal alkaloids in the plant and in different in vitro systems. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 21, medicinal and aromatic plants IV, Springer Verlag, Berlin, Germany, pp 339–352

    Google Scholar 

  • El Imam YMA, Evans WC (1984) Tropane alkaloids of species of Anthocercis, Cyphanthera and Crenidium. Planta Med 50:86–87

    PubMed  CAS  Google Scholar 

  • El Imam YMA, Evans WC, Haegi L, Ramsey KPA (1991) Secondary metabolites of intergeneric hybrids of the Anthocercideae, family Solanaceae. Int J Pharmacog 29:263–267

    CAS  Google Scholar 

  • El Kheir YM, Salih MH (1979) Investigation of the alkaloidal content of Solanum dubium L. growing in Sudan. Fitoterapia 50:255–258

    CAS  Google Scholar 

  • Elliger CA, Waiss AC Jr (1989) Insect growth inhibitors from Petunia and other solanaceous plants. ACS Sympos Ser No 387, American Chemical Society, Washington, DC, pp 188–205

    Google Scholar 

  • Elliger CA, Waiss AC Jr (1991) Insect resistance factors in Petunia. In: Hedin PA (ed) Naturally Occurring Pest Bioregulators. ACS Sympos Ser No 449, American Chemical Society, Washington, DC, pp 210–223

    Google Scholar 

  • Elliger CA, Benson M, Haddon WF, Lundin RE, Waiss AC Jr, Wong RY (1988a) Petuniasterones, novel ergostane-type steroids of Petunia hybrida VILM. (Solanaceae) having insect-inhibitory activity. X-ray molecular structure of the 22, 24, 25-[(methoxycarbonyl) orthoacetate] of 7α, 22, 24, 25-tetrahydroxyergosta-1, 4-dien-3-one and of 1α-acetoxy-24, 25-epoxy-7α-hydroxy-22-(methylthiocarbonyl) acetoxyergost-4-en-3-one. J Chem Soc, Perkin Transact I:711–717

    Google Scholar 

  • Elliger CA, Benson M, Lundin RE, Waiss AC Jr (1988b) Minor petuniasterones from Petunia hybrida. Phytochemistry 27:3597–3603

    CAS  Google Scholar 

  • Elliger CA, Haddon WF, Waiss AC Jr, Benson M (1989a) Petuniasterone N, an unusual ergostanoid from Petunia species. J Nat Prod 52:576–580

    CAS  Google Scholar 

  • Elliger CA, Wong RY, Benson M, Waiss AC Jr (1989b) X-ray crystal structure of petuniasterone O, a novel ergostanoid from Petunia parodii. J Nat Prod 52:1345–1349

    CAS  Google Scholar 

  • Elliger CA, Waiss AC Jr, Benson M, Wong RY (1990) Ergostanoids from Petunia parodii. Phytochemistry 29:2853–2863

    CAS  Google Scholar 

  • Elliger CA, Waiss AC Jr, Benson M (1992) Petuniasterone R, a new ergostanoids from Petunia parodii. J Nat Prod 55:129–133

    CAS  Google Scholar 

  • Elliger CA, Waiss AC Jr, Benson M, Wong RY (1993) Ergostanoids from Petunia inflata. Phytochemistry 33:471–477

    CAS  Google Scholar 

  • Enzell CR, Wahlberg I, Aasen AJ (1977) Isoprenoids and alkaloids of tobacco. In: Zechmeister L, Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 34. Springer Verlag, Wien/A, pp 1–79

    Google Scholar 

  • Esteves-Souza A, Sarmento da Silva TM, Alves CCF, de Carvalho MG, Braz-Filho R, Echevarria A (2002) Cytotoxic activities against Ehrlich carcinoma and human K562 leukemia of alkaloids and flavonoid from two Solanum species. J Brazil Chem Soc 13:838–842

    CAS  Google Scholar 

  • Faini F, Torres R, Delle Monache F, Martini-Bettolo GB, Castillo M (1980) 1-Acetyl-3-carboxy-β-carboline, a new acid and other constituents of Vestia lycioides. Planta Med 38:128–132

    CAS  Google Scholar 

  • Faini F, Torres R, Castillo M (1984) (25R)-Isonuatigenin, an unusual steroidal sapogenin from Vestia lycioides. Phytochemistry 23:1301–1303

    CAS  Google Scholar 

  • Fajardo V, Freyer AJ, Minard RD, Shama M (1987) (+)-Jaborol, an unusual phenolic withanolide from Jaborosa magellanica. Tetrahedron 43:3875–3880

    CAS  Google Scholar 

  • Fakhrutdinova IM, Sidyakin GP, Yunusov SY (1965) Alkaloids from Haplophyllum robustum. Structure of robustine, Khim Prirodn Soedin, Akad Nauk Uz SSR 107–109

    Google Scholar 

  • Fang L, Chai HB, Castillo JJ, Soejarto DD, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (2003) Cytotoxic constituents of Brachistus stramoniifolius. Phytother Res 17:520–523

    PubMed  CAS  Google Scholar 

  • Farag MA, Paré PW (2002) C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    PubMed  CAS  Google Scholar 

  • Fayez MBE, Saleh AA (1967) Steroidal alkaloids of Solanum wrightii BENTH. Phytochemistry 6:433–436

    CAS  Google Scholar 

  • Ferreira F, Soulé S, Vazquez A, Moyna P, Kenne L (1996) Steroid saponins from Solanum laxum. Phytochemistry 42:1409–1416

    PubMed  CAS  Google Scholar 

  • Ferrer A, Ferrer G, Perez C, Coll F, Borrego J, Jomarron I, Anaya H, Fuentes V (1998) Schlechtendamine, a new steroid alkaloid from Solanum schlechtendalianum WALP. Revista Cubana de Quimica 10:3–9

    CAS  Google Scholar 

  • Ferro EA, Alvarenga NL, Ibarrola DA, Hellion-Ibarrola MC, Ravelo AG (2005) A new steroidal saponin from Solanum sisymbrifolium roots. Fitoterapia 76:577–579

    PubMed  CAS  Google Scholar 

  • Fewell AM, Roddick JG (1997) Potato glycoalkaloid impairment of fungal development. Mycol Res 101:597–603

    CAS  Google Scholar 

  • Fewell AM, Roddick JG, Weissenberg M (1994) Interactions between the glycoalkaloids solasonine and solamargine in relation to inhibition of fungal growth. Phytochemistry 37:1007–1011

    PubMed  CAS  Google Scholar 

  • Fôdéré, Hecht (before 1884) Ann Chem Pharm 3:130; fide Husemann et al. (1884)

    Google Scholar 

  • Fontaine TD, Irving GW Jr, Ma RM, Poole JB, Doolittle SP (1948) Isolation and partial characterization of crystalline tomatine, an antibiotic agent from the tomato plant. Arch Biochem 18:467–475

    PubMed  CAS  Google Scholar 

  • Fontaine TD, Ard JS, Ma RM (1951) Tomatidine, a steroid secondary amine. J Am Chem Soc 73:878–879

    CAS  Google Scholar 

  • Franz C, Jatisatienr A (1983) Pflanzliche Steroid-Rohstoffe: Wird Solasodin das Diosgenin des nächsten Jahrzehnts? Dtsch Apoth Ztg 123:1069–1072

    CAS  Google Scholar 

  • Friedman M (2002) Tomato glycoalkaloids: Role in the plant and in the diet. J Agric Food Chem 50:5751–5780

    PubMed  CAS  Google Scholar 

  • Friedman M (2006) Potato glycoalkaloids: Roles in the plant and in the diet. J Agric Food Chem 54:8655–8681

    PubMed  CAS  Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Critic Rev Plant Sci 16:55–132

    CAS  Google Scholar 

  • Friedman M, Kozukue N, Harden LA (1997) Structure of the tomato glycoalkaloid tomatidenol-3-β-lycotetraose (dehydrotomatine) J Agric Food Chem 45:1541–1547

    CAS  Google Scholar 

  • Friedman M, Lee KR, Kim HJ, Lee IS, Kozukue N (2005) Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem 53:6162–6169

    PubMed  CAS  Google Scholar 

  • Fuchs A, Slobbe W, Mol PC, Posthumus MA (1983) GC/MS analysis of fungitoxic terpenoids from tobacco. Phytochemistry 22:1197–1199

    CAS  Google Scholar 

  • Fujita M, Yoshizawa T (1989) Induction of phytoalexins by various mycotoxins and metabolism of mycotoxins in sweet potato tissues. Shokuhin Eiseigaku Zasshi 30:501–505

    CAS  Google Scholar 

  • Fujiwara Y, Yahara S, Ikeda T, Ono M, Nohara T (2003) Cytotoxic major saponin from tomato fruits. Chem Pharm Bull 51:234–235

    PubMed  CAS  Google Scholar 

  • Fujiwara Y, Takaki A, Uehara Y, Ikeda T, Okawa M, Yamauchi K, Ono M, Yoshimitsu H, Nohara T (2004) Tomato steroidal alkaloid glycosides, esculeosides A and B, from ripe fruits. Tetrahedron 60:4915–4920

    CAS  Google Scholar 

  • Fujiwara Y, Yoshizaki M, Matsushita S, Yahara S, Yae E, Ikeda T, Ono M, Nohara T (2005) A new tomato pregnane glycoside from the overripe fruits. Chem Pharm Bull 53:584–585

    PubMed  CAS  Google Scholar 

  • Fukuhara K, Shimizu K, Kubo I (2004) Arudonine, an allelopathic steroidal glycoalkaloid from the root bark of Solanum arundo MATTEI. Phytochemistry 65:1283–1286

    PubMed  CAS  Google Scholar 

  • Gaffield W, Keeler RF (1993) Implication of C-5, C-6-unsaturation as a key structural factor in steroidal alkaloid-induced mammalian teratogenesis. Experientia 49:922–924

    PubMed  CAS  Google Scholar 

  • Gambaro V, Piovano M, Garbarino JA (1986) 9-Acetoxynerolidol from Phrodus bridgesii. Phytochemistry 25:739–740

    CAS  Google Scholar 

  • Gan KH, Lin CN (1997) A steroidal glycoside from Solanum pseudocapsicastrum. Chin Pharmac J (Taipei) 49:315–320

    CAS  Google Scholar 

  • Gan KH, Lin CN, Won SJ (1993) Cytotoxic principles and their derivatives of Formosan Solanum plants. J Nat Prod 56:15–21

    PubMed  CAS  Google Scholar 

  • Garbarino JA, Chamy MC, Gambaro V (1986) Labdane diterpenoids from Nolana rostrata. Phytochemistry 25:2833–2836

    CAS  Google Scholar 

  • Garbarino JA, Chamy MC, Piovano M, Gambaro V (1988) Labdane diterpenoids from Nolana filifolia. Phytochemistry 27:1795–1796

    CAS  Google Scholar 

  • Garbarino JA, Chamy MC, Montagna MP, Gambaro V (1993) Sesquiterpenoids from Nolana coelestis. Phytochemistry 32:987–989

    CAS  Google Scholar 

  • Garcia Jiménez F, Pérezamador MC (1967) Corymbosin, a glucoside from Turbina corymbosa. Tetrahedron 23:2557–2561

    PubMed  Google Scholar 

  • Garcia Jiménez F, Collera O, Larios G, Taboada J, Pérezamador MC (1979) Revision of the structure of turbicorytin and corymbositin. Rev Latinoamer Quim 10:181–184

    Google Scholar 

  • Garcia Jiménez F, Pérezamador C, Collera ZO (1993) ent-16α, 17, 19-Kauranetriol-17-O, 19-O-di-O-β-D-glucopyranoside, a new glucoside from Turbina corymbosa. Tetrahedron 23:2557–2561

    Google Scholar 

  • Gardner HW, Desjardins AE, McCormick SP, Weisleder D (1994) Detoxification of the potato phytoalexin rishitin by Gibberella pulicaris. Phytochemistry 37:1001–1005

    CAS  Google Scholar 

  • Geuns JMC (1978) Steroid hormones and plant growth and development. Phytochemistry 17:1–14

    CAS  Google Scholar 

  • Ghosal S, Singh AK, Chaudhuri RK (1976) Chemical constituents of Gentianaceae XX: Natural occurrence of loliolide in Canscora decussata. J Pharmaceut Sci 65:1549–1551

    CAS  Google Scholar 

  • Ghosh D, Laddha KS (2006) Extraction and monitoring of phytoecdysteroids through HPLC. J Chrom Sci 44:22–26

    CAS  Google Scholar 

  • Ghosh M, Sinhababu SP, Sukul NC, Sahu NP, Mahato SB (1994) Antifilarial effect of solamargine isolated from Solanum khasianum. Int J Pharmacog 32:184–190

    CAS  Google Scholar 

  • Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature (London) 302:608–609

    CAS  Google Scholar 

  • Gil RR, Lin LZ, Chai HB, Pezzuto JM, Cordell GA (1995) Cardenolides from Nierembergia aristata. J Nat Prod 58:848–856

    PubMed  CAS  Google Scholar 

  • Giles JA, Schumacher JN (1961) Turkish tobacco. I. Isolation and characterization of α- and β-levantenolides. Tetrahedron 14:246–251

    CAS  Google Scholar 

  • Glotter E (1991) Withanolides and related ergostane-type steroids. Nat Prod Rep 8:415–440

    PubMed  CAS  Google Scholar 

  • Goncharik NN, Volynets AP, Kintya PK (2004) The after-effect of steroid glycosides on seed quality and seedling growth of wheat (Triticum aestivum L.). Vestsi Natsy Akad Belarus, Ser Biyala Navuk 23–26

    Google Scholar 

  • Goñi I, Serrano J, Saura-Calixto F (2006) Bioaccessibility of β-carotene, lutein, and lycopene from fruits and vegetables. J Agric Food Chem 54:5382–5387

    PubMed  Google Scholar 

  • Gonzalez AG, Garcia Francisco C, Freire Barreira R, Suarez Lopez E (1971) New sources of steroidal sapogenins. IX. Solanum vespertilio. Farmacia Nueva 37:905–908, 911–914

    Google Scholar 

  • Gonzalez AG, Freire Barreira R, Garcia Francisco C, Salazar Rocio JA, Suarez Lopez E (1972) New natural source of steroidal sapogenins. XVII. Anal Quim 68:1063–1064

    Google Scholar 

  • Gonzalez AG, Freire R, Francisco CG, Salazar JA, Suarez E (1973) 20S-Hydroxyvespertilin, a new steroid lactone from Solanum vespertilio. Tetrahedron 29:1731–1734

    CAS  Google Scholar 

  • Gonzalez AG, Freire Barreira R, Garcia Francisco C, Salazar Rocio JA, Suarez Lopez E (1974) Determination of the structures of anosmagenin and 15-dehydro-14β-anosmagenin, two new spirostanic sapogenins of Solanum vespertilio. Anal Quim 70:250–253

    Google Scholar 

  • Gonzalez AG, Francisco CG, Freire R, Hernández R, Salazar JA, Suarez E, Morales A, Usubillaga A (1975) Andesgenin, a new steroid sapogenin from Solanum hypomalacophyllum. Phytochemistry 14:2483–2485

    Google Scholar 

  • González M, Zamilpa A, Marquina S, Navarro V, Alvarez L (2004) Antimycotic spirostanol saponins from Solanum hispidum leaves and their structure-activity relationships. J Nat Prod 67:938–941

    PubMed  Google Scholar 

  • Grace MH, Saleh MM (1996) Hepatoprotective effect of daturaolone isolated from Solanum arundo. Pharmazie 51:593–595

    PubMed  CAS  Google Scholar 

  • Gregory P, Sinden SL, Osman SF, Tingey WM, Chessin DA (1981) Glycoalkaloids of wild, tuber-bearing Solanum species. J Agric Food Chem 29:1212–1215

    CAS  Google Scholar 

  • Griffiths DW, Bain H, Deighton N, Robertson GW, Finlay M, Dale B (2000) Photo-induced synthesis of tomatidenol-based glycoalkaloids in Solanum phureja tubers. Phytochemistry 53:739–745

    PubMed  CAS  Google Scholar 

  • Gross D (1977) Phytoalexine und verwandte Pflanzenstoffe. In: Zechmeister L, Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 34. Springer Verlag, Wien/A, pp 187–247

    Google Scholar 

  • Grunenfelder LA, Knowles LO, Hiller LK, Knowles NR (2006) Glycoalkaloid development during greening of fresh market potatoes (Solanum tuberosum L.). J Agric Food Chem 54:5847–5854

    PubMed  CAS  Google Scholar 

  • Gubarev MI, Enioutina EY, Taylor JL, Visic DM, Daynes RA (1998) Plant-derived glycoalkaloids protect mice against lethal infection with Salmonella typhimurium. Phytother Res 12:79–88

    CAS  Google Scholar 

  • Guishan T, Pingsheng X, Zhiyong D, Guocheng T (1991) Studies on the chemical compounds of Ipomoea batatas LAM. Nat Prod Res Develop 7:44–46

    Google Scholar 

  • Gutsu EV, Kintya PK (1989) Steroidal glycosides from the roots of Capsicum annuum. IV. Structure of capsicosides C2 and C3. Khim Prir Soed 582–584

    Google Scholar 

  • Gutsu EV, Kintya PK, Lazur’evskii GV, Balashova NN (1984) Steroidal alkaloids and glycosides of Capsicum annuum L. Rastitel’nye Resursy 20:127–130

    CAS  Google Scholar 

  • Gutsu EV, Kintya PK, Lazur’evskii GV (1986) Steroid glycosides of Capsicum annuum root. I. The structure of capsicosides A1, B1, and C1. Khim Prir Soed 708–712

    Google Scholar 

  • Gutsu EV, Kintya PK, Lazur’evskii GV (1987a) Steroid glycosides of Capsicum annuum root. II. Structure of capsicosides A2 and B2. Khim Prir Soed 242–246

    Google Scholar 

  • Gutsu EV, Shvets SA, Kintya PK, Lazur’evskii GV (1987b) Steroidal glycosides of Capsicum annuum L. roots. The structure of capsicosines D1, E1. FECS Int Conf Chem Biotechnol Biol Act Nat Prod (Proc), 3rd. VCH, Weinheim, Germany, pp 436–440

    Google Scholar 

  • Habtemariam S (1997) Cytotoxicity and immunosuppressive activity of withanolides from Discopodium penninervium. Planta Med 63:15–17

    PubMed  CAS  Google Scholar 

  • Habtemariam S, Gray AI (1998) Withanolides from the roots of Discopodium penninervium. Planta Med 64:275–276

    PubMed  CAS  Google Scholar 

  • Habtemariam S, Gray AI, Waterman PG (1993) 16-Oxygenated withanolides from the leaves of Discopodium penninervium. Phytochemistry 34:807–811

    CAS  Google Scholar 

  • Habtemariam S, Skelton BW, Waterman PG, White AH (2000) 17-Epiacnistin-A, a further withanolide from leaves of Discopodium penninervium. J Nat Prod 63:512–513

    PubMed  CAS  Google Scholar 

  • Hall CA, Hobby T, Cipollini M (2006) Efficacy and mechanisms of α-solasonine- and α-solamargine-induced cytolysis on two strains of Trypanosoma cruzi. J Chem Ecol 32:2405–2416

    PubMed  CAS  Google Scholar 

  • Hänsel R, Sticher O (2007) Pharmakognosie – Phytopharmazie, 8th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Haraguchi M, Mimaki Y, Motidome M, Morita H, Takeya K, Itokawa H, Yokosuka A, Sashida Y (2000) Steroidal saponins from the leaves of Cestrum sendtenerianum. Phytochemistry 55:715–720

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Kawagishi H, Nakayama T, Shimizu M (1997) Effect of capsianoside, a diterpene glycoside, on tight-junctional permeability. Biochim Biophys Acta Biomembranes 1323:281–290

    CAS  Google Scholar 

  • Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Hawkes JG (1999) The economic importance of the family Solanaceae. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – advances in taxonomy and utilization. Royal Botanic Gardens, Kew, pp 1–8

    Google Scholar 

  • Heemann V, Brümmer U, Paulsen C, Seehofer F (1983) Composition of the leaf surface gum of some Nicotiana species and Nicotiana tabacum cultivars. Phytochemistry 22:133–135

    CAS  Google Scholar 

  • Heftmann E (1983) Biogenesis of steroids in Solanaceae. Phytochemistry 22:1843–1860

    CAS  Google Scholar 

  • Heftmann E, Schwimmer S (1972) Degradation of tomatine to 3β-hydroxy-5α-pregn-16-en-20-one by ripe tomatoes. Phytochemistry 11:2783–2787

    CAS  Google Scholar 

  • Heftmann E, Weaver ML (1974) 26-Hydroxycholesterol and cholest-4-en-3-one, the first metabolites of cholesterol in potato plants. Phytochemistry 13:1801–1803

    CAS  Google Scholar 

  • Hegnauer R (1973) Chemotaxonomie der Pflanzen, vol 6. Birkhäuser Verlag Basel, Switzerland, pp 420–430; 446–449

    Google Scholar 

  • Hegnauer R (1990) Chemotaxonomie der Pflanzen, vol 9. Birkhäuser Verlag Basel, Switzerland, pp 585–588

    Google Scholar 

  • Henrici A (1996) Neuartige Sekundärstoffe unterschiedlichster Struktur aus tropischen Convolvulaceen. Dissertation Fachbereich Pharmazie, Freie Universität Berlin, Germany

    Google Scholar 

  • Herrera-Arellano A, Jiménez-Ferrer E, Vega-Pimentel AM, Martínez-Rivera MdlA, Hernández-Hernández M, Zamilpa A, Tortoriello J (2004) Clinical and mycological evaluation of therapeutic effectiveness of Solanum chrysotrichum standardized extract on patients with Pityriasis capitis (dandruff). A double blind and randomized clinical trial controlled with ketoconazole. Planta Med 70:483–488

    PubMed  CAS  Google Scholar 

  • Honbu T, Ikeda T, Zhu XH, Yoshihara O, Okawa M, Nafady AM, Nohara T (2002) New steroidal glycosides from the fruits of Solanum anguivi. J Nat Prod 65:1918–1920

    PubMed  CAS  Google Scholar 

  • Hu K, Kobayashi H, Dong AJ, Jing YK, Iwasaki SG, Yao XS (1999) Antineoplastic agents. Part 3. Steroidal glycosides from Solanum nigrum. Planta Med 65:35–38

    PubMed  CAS  Google Scholar 

  • Huang Y, Liu JK, Mühlbauer A, Henkel T (2002) Three novel taccalonolides from the tropical plant Tacca subflaellata. Helv Chim Acta 85:2553–2558

    CAS  Google Scholar 

  • Hunziker AT (2001) Genera Solanacearum – the genera of Solanaceae illustrated, arranged according to a new system. A.R.G.Gantner Verlag, Ruggell, Lichtenstein

    Google Scholar 

  • Husemann T (1875) Arch Exp Path Pharm 4:369; fide Husemann et al. (1884)

    Google Scholar 

  • Husemann A, Hilger A, Husemann T (1884) Die Pflanzenstoffe in chemischer, physiologischer, pharmakologischer und toxikologischer Hinsicht, vol 2. Julius Springer, Berlin, pp. 1148–1149

    Google Scholar 

  • Hussain S, Ahmed E, Malik A, Jabbar A, Arshad M (2005) Phytochemical studies on Cressa cretica. J Chem Soc Pak 27:296–298

    CAS  Google Scholar 

  • Iida Y, Yanai Y, Ono M, Ikeda T, Nohara T (2005) Three unusual 22-β-O-23-hydroxy-(5α)-spirostanol glycosides from the fruits of Solanum torvum. Chem Pharm Bull 53:1122–1125

    PubMed  CAS  Google Scholar 

  • Ikeda T, Ando J, Miyazono A, Zhu XH, Tsumagari H, Nohara T, Yokomizo K, Uyeda M (2000) Anti-herpes virus activity of Solanum steroidal glycosides. Biol Pharm Bull 23:363–364

    PubMed  CAS  Google Scholar 

  • Indrayanto G, Cholies N, Wahyudi (1985) Influence of fruit size of Solanum wrightii on its solasodine content. Planta Med 51:470

    PubMed  CAS  Google Scholar 

  • Indrayanto G, Sondakh R, Syahrani A, Utami W (1998) Solanum mammosum L. (Terong Susu): In vitro culture and the production of steroidal alkaloids and other secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry vol 41, medicinal and aromatic plants IV. Springer, Berlin, Germany, pp 395–414

    Google Scholar 

  • Inoue H, Kato N, Uritani I (1977) 4-Hydroxydehydromyoporone from infected Ipomoea batatas root tissue. Phytochemistry 16:1063–1065

    CAS  Google Scholar 

  • Iorizzi M, Lanzotti V, De Marino S, Zollo F, Blanco-Molina M, Macho A, Muñoz E (2001) New glycosides from Capsicum annuum L. var. acuminatum. Isolation, structure determination, and biological activity. J Agric Food Chem 49:2022–2029

    PubMed  CAS  Google Scholar 

  • Iorizzi M, Lanzotti V, Ranalli G, de Marino S, Zollo F (2002) Antimicrobial furostanol saponins from the seeds of Capsicum annuum L. var. acuminatum. J Agric Food Chem 50:4310–4316

    PubMed  CAS  Google Scholar 

  • Irvine WJ, Woollen BH, Jones DH (1972) Bombiprenone from Nicotiana tabacum. Phytochemistry 11:467–469

    CAS  Google Scholar 

  • Ishi M (1933) The carotenoids and some lipoids of Ipomoea reptans (L.) POIR. Experiment Station Record (U.S. Department of Agriculture) 71:559

    Google Scholar 

  • Itoh T, Tamura T, Matsumoto T (1977) Triterpene alcohols in the seeds of Solanaceae. Phytochemistry 16:1723–1726

    CAS  Google Scholar 

  • Izimitani Y, Yahara S, Nohara T (1990) Novel acyclic diterpene glycosides, capsianosides A – F and I – V from Capsicum plants. Chem Pharm Bull 38:1299–1307

    Google Scholar 

  • Jackson DM, Severson RF, Johnson AW, Herzog GA (1986) Effect of cuticular duvane diterpenes from green tobacco leaves on tobacco budworm (Lepidoptera: Noctuidae) oviposition. J Chem Ecol 12:1349–1359

    CAS  Google Scholar 

  • Jackson DM, Severson RF, Sisson VA, Stephenson MG (1991) Ovipositional response of tobacco budworm moths (Lepidoptera: Noctuidae) to cuticular labdanes and sucrose esters from the green leaves of Nicotiana glutinosa L. (Solanaceae). J Chem Ecol 17:2489–2506

    CAS  Google Scholar 

  • Jacobo-Herrera NJ, Bremner P, Márquez N, Gupta MP, Gibbons S, Muñoz E, Heinrich M (2006) Physalins from Witheringia solanacea as modulators of the NF-κB cascade. J Nat Prod 69:328–331

    PubMed  CAS  Google Scholar 

  • Jacobs WA, Fleck EE (1930) Tigogenin, a Digitalis sapogenin. J Biol Chem 88:545–550

    CAS  Google Scholar 

  • Jacobs WA, Simpson JCE (1935) The Digitalis sapogenins. J Biol Chem 110:429–438

    CAS  Google Scholar 

  • Jayaprakasam B, Nair MG (2003) Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 59:841–849

    CAS  Google Scholar 

  • Jayaprakasam B, Strasburg GA, Nair MG (2004) Potent lipid inhibitors from Withania somnifera fruits. Tetrahedron 60:3109–3121

    CAS  Google Scholar 

  • Jenett-Siems K (1996) Phytochemische Untersuchungen an Windengewächsen der Gattungen Calystegia, Convolvulus, Ipomoea und Merremia unter besonderer Berücksichtigung des Alkaloidvorkommens. Dissertation Fachbereich Pharmazie, Freie Universität Berlin, Germany

    Google Scholar 

  • Jenett-Siems K, Siems K, Witte L, Eich E (2001) Merrekentrones A – D, ipomeamarone-like furanosesquiterpenes from Merremia kentrocaulos. J Nat Prod 64:1471–1473

    PubMed  CAS  Google Scholar 

  • Jiménez-Escrig A, Santos-Hidalgo AB, Saura-Calixto F (2006) Common sources and estimated intake of plant sterols in the Spanish diet. J Agric Food Chem 54:3462–3471

    PubMed  Google Scholar 

  • Joshi BS, Rane DF (1967) Structure and synthesis of corymbosin, a flavone from Webera corymbosa. Tetrahedron Lett. 4579–4581

    Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF (1999) Plant systematics – a phylogenetic approach. Sinauer Associates, Sunderland, MA, USA

    Google Scholar 

  • Kalinowska M, Zimowski J, P&acedil;czkowski C, Wojciechowski ZA (2005) The formation of sugar chains in triterpenoid saponins and glycoalkaloids. Phytochem Rev 4:237–257

    CAS  Google Scholar 

  • Kamiwatari T, Setoguchi S, Takamine K, Ogata S (2005) Content of monoterpene alcohols in stressed sweet potatoes and the flavor property of imu-shochu. Nippon Jozo Kyokaishi 100:520–526

    CAS  Google Scholar 

  • Kaneko K, Watanabe M, Kawakoshi Y, Mitsuhashi H (1971) Etioline as important precursor in solanidine biosynthesis in Veratrum grandiflorum. Tetrahedron Lett 4251–4254

    Google Scholar 

  • Kaneko K, Tanaka MW, Mitsuhashi H (1976) Origin of nitrogen in the biosynthesis of solanidine by Veratrum grandiflorum. Phytochemistry 15:1391–1393

    CAS  Google Scholar 

  • Kaneko K, Terada S, Yoshida N, Mitsuhashi H (1977a) Structure of barogenin from Solanum tuberosum. Phytochemistry 16:791–793

    CAS  Google Scholar 

  • Kaneko K, Tanaka MW, Mitsuhashi H (1977b) Dormantinol, a possible precursor in solanidine biosynthesis from budding Veratrum grandiflorum. Phytochemistry 16:1247–1251

    CAS  Google Scholar 

  • Kaneko K, Tanaka MW, Takahashi E, Mitsuhashi H (1977c) Teinemine and isoteinemine, two new alkaloids from Veratrum grandiflorum. Phytochemistry 16:1620–1622

    CAS  Google Scholar 

  • Kapundu M, Delaude C (1988) Sapogenins of Schwenckia americana L. Bull Soc Roy Sci Liège 57:561–565

    CAS  Google Scholar 

  • Karawya MS, Rizk AFM, Hammouda FM, Diab AM, Ahmed ZF (1972) Phytochemical investigation of certain Cestrum species growing in Egypt. Act Chim Acad Sci Hungar 72:317–322

    CAS  Google Scholar 

  • Kashiwaga T, Mikagi E, Mekuria DB, Boru AD, Tebayashi SI, Kim CS (2005) Ovipositional deterrent on mature stage of sweet pepper, Capsicum annuum, against Liriomyza trifolii (BURGESS). Z Naturforsch 60c:739–742

    Google Scholar 

  • Kato N, Imaseki H, Nakashima N, Uritani I (1971) Structure of a new sesquiterpenoid, ipomeamaronol, in diseased sweet potato root tissue. Tetrahedron Lett 843–846

    Google Scholar 

  • Kawaguchi Y, Ochi T, Takaishi Y, Kawazoe K, Lee KH (2004) New sesquiterpenes from Capsicum annuum. J Nat Prod 67:1893–1896

    PubMed  CAS  Google Scholar 

  • Kawashima Y (1996) Flavors and fragrance materials kept in traditional folklores. Foods Food Ingred J Jpn 169:29–36

    CAS  Google Scholar 

  • Kennedy BS, Nielsen MT, Severson RF, Sisson VA, Stephenson MK, Jackson DM (1992) Leaf surface chemicals from Nicotiana affecting germination of Peronospora tabacina ADAM sporangia. J Chem Ecol 18:1467–1479

    CAS  Google Scholar 

  • Kerber VA, Moreira EA, Gomes EC, Weiss FA, Vieira RF (1993) Qualitative and quantitative evaluation of steroidal alkaloids in three Solanum species – (S. grandifolium, S. lacerdae, and S. lycocarpum) with reference to solasodine. Rev Brasil Farm 74:67–69

    CAS  Google Scholar 

  • Kereselidze EV, Pkheidze TA, Kemertelidze EP (1970) Steroid sapogenins from Cestrum elegans and Cestrum parqui. Khim Prir Soedin 6:379

    CAS  Google Scholar 

  • Kessler A, Baldwin I (2001) Defensive function of herbivore-induced plant volatile emission in nature. Science 291:2141–2144

    PubMed  CAS  Google Scholar 

  • Keukens EAJ, de Vrije T, Jansen LAM, de Boer H, Janssen M, de Kroon AIPM, Jongen WMF, de Kruijff B (1996) Glycoalkaloids selectively permeabilize cholesterol containing biomembranes. Biochim Biophys Act 1279:243–250

    Google Scholar 

  • Khan PM, Malik A, Ahmad S, Nawaz HR (1999) Withanolides from Ajuga parviflora. J Nat Prod 62:1290–1292

    PubMed  CAS  Google Scholar 

  • Kiliani H (1890) Über die Zusammensetzung des Digitonins. Ber 23:1555–1560

    Google Scholar 

  • Kiliani H (1911) Digitonin, Digitogensäure und ihre Oxydationsprodukte. Ber 43:3574–3579

    CAS  Google Scholar 

  • Kim SY, Kim HP, Huh H, Kim YC (1997) Antihepatotoxic zeaxanthins from the fruits of Lycium chinense. Arch Pharmacol Res 20:529–532

    CAS  Google Scholar 

  • Kim YC, Che QM, Gunatilaka AAL, Kingston DGI (1996) Bioactive steroidal alkaloids from Solanum umbelliferum. J Nat Prod 59:283–285

    PubMed  CAS  Google Scholar 

  • Kinghorn AD, Su BN, Jang DS, Chang LC, Lee D, Gu JQ, Carcache-Blanco EJ, Pawlus AD, Lee SK, Park EJ, Cuendet M, Gills JJ, Bhat K, Park HS, Mata-Greenwood E, Song LL, Jang M, Pezzuto (2004) Natural inhibitors of carcinogenesis. Planta Med 70:691–705

    PubMed  CAS  Google Scholar 

  • Kintya PK, Prasol TI (1991) Steroidal glycosides from seeds of Solanum tuberosum. Tuberosides C and D. Khim Prir Soed 586–587

    Google Scholar 

  • Kintya PK, Shvets SA (1984) Steroid glycosides of Solanum melongena seeds. Structure of melongosides A, B, E, F, G, and H. Khim Prir Soed 610–614

    Google Scholar 

  • Kintya PK, Shvets SA (1985a) Melongoside L and melongoside M, steroidal saponins from Solanum melongena seeds. Phytochemistry 24:197–198

    CAS  Google Scholar 

  • Kintya PK, Shvets SA (1985b) Melongoside N, O and P: steroidal saponins from seeds of Solanum melongena. Phytochemistry 24:1567–1569

    CAS  Google Scholar 

  • Kirson I, Glotter E, Ray AB, Ali A, Gottlieb HE, Sahai M (1983) Physalolactone B 3-O-β-D-glucopyranoside, the first glycoside in the withanolide series. J Chem Res, Synopses:120–121

    Google Scholar 

  • Kiyota N, Shingu K, Yamaguchi K, Yoshitake Y, Harano K, Yoshimitsu H, Ikeda T, Nohara T (2007) New C28 steroidal glycosides from Tubocapsicum anomalum. Chem Pharm Bull 55:34–36

    PubMed  CAS  Google Scholar 

  • Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae – a model for linking genomics with biodiversity. Comp Funct Genom 5:285–291

    CAS  Google Scholar 

  • Kohara A, Nakajima C, Hashimoto K, Ikenaga T, Tanaka H, Shoyama Y, Yoshida S, Muranaka T (2005) A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum. Plant Mol Biol 57:225–239

    PubMed  CAS  Google Scholar 

  • Kojima M, Uritani I (1981) Abnormal secondary metabolites in plants. In: Natori S, Ikekawa N, Suzuki M (eds) Advances in natural products chemistry. Kodansha Ltd, Tokyo, Wiley, New York, pp 178–194

    Google Scholar 

  • Krasowski MD, McGehee DS, Moss J (1997) Natural inhibitors of cholinesterase: Implications for adverse drug reactions. Can J Anaesth 44:525–534

    PubMed  CAS  Google Scholar 

  • Kubota T (1958) Volatile constituents of black-rotted sweet potato and related substances. Tetrahedron 4:68–86

    CAS  Google Scholar 

  • Kubota T, Matsuura T (1956) Synthesis of (±)-ipomeamarone [(±)-ngaione]. Chem Ind (London) 521–522

    Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone attenuate Aβ(25-35)-induced neurodegeneration. Eur J Neurosci 23:1417–1426

    PubMed  Google Scholar 

  • Kuc J (1982) Phytoalexins from the Solanaceae. In: Bailey JA, Mansfield JW (eds) Phytoalexins. Wiley, New York, pp 81–105

    Google Scholar 

  • Kuhn R, Grundmann C (1933) Kryptoxanthin, ein Xantophyll der Formel C40H56O. Ber 66B:1746–1750

    CAS  Google Scholar 

  • Kuhn R, Löw I (1947) Demissin, ein Alkaloidglykosid aus den Blättern von Solanum demissum. Ber 80:406–410

    CAS  Google Scholar 

  • Kuhn R, Löw I (1954) Zur Konstitution des Solanins. Angew Chem 66:639–640

    CAS  Google Scholar 

  • Kuhn R, Löw I (1957) Neue Alkaloidglykoside in den Blättern von Solanum chacoense. Angew. Chem 69:236

    CAS  Google Scholar 

  • Kuhn R, Löw I (1961a) Zur Konstitution der Leptine. Ber 94:1088–1095

    CAS  Google Scholar 

  • Kuhn R, Löw I (1961b) Zur Konstitution des Leptinidins. Ber 94:1096–1103

    CAS  Google Scholar 

  • Kuhn R, Wiegand W (1929) Der Farbstoff der Judenkirsche (Physalis Alkekengi und Physalis Franchetti). Helv Chim Acta 12:499–506

    CAS  Google Scholar 

  • Kuhn R, Winterstein A, Kaufmann W (1930) Konjugierte Doppelbindungen. XII. Physalis-Farbstoff. Ber 63B:1489–1497

    CAS  Google Scholar 

  • Kuhn R, Löw I, Trischmann H (1955a) Die Konstitution des Solanins. Ber 88:1492–1507

    CAS  Google Scholar 

  • Kuhn R, Löw I, Trischmann H (1955b) Die Konstitution des α-Chaconins. Ber 88:1690–1693

    CAS  Google Scholar 

  • Kuhn R, Löw I, Trischmann H (1957) Die Konstitution der Lycotetraose. Ber 90:203–218

    CAS  Google Scholar 

  • Kumar P, Kushwaha RA (2006) Medicinal evaluation of Withania somnifera (L.) Dunal (Ashwagandha). Asian J Chem 18:1401–1404

    CAS  Google Scholar 

  • Kuo KW, Hsu SH, Li YP, Lin WL, Liu LF, Chang LC, Lin CC, Lin CN, Sheu HM (2000) Anticancer activity evaluation of the Solanum glycoalkaloid solamargine. Triggering apoptosis in human hepatoma cells. Biochem Pharmacol 60:1865–1873

    PubMed  CAS  Google Scholar 

  • Kupchan SM, Barboutis SJ, Know JR, Lau Cam CA (1965a) Beta-solamarine: Tumor inhibitor isolated from Solanum dulcamara. Science 150:1827–1828

    PubMed  CAS  Google Scholar 

  • Kupchan SM, Doskotch RW, Bollinger P, McPhail AT, Sim GA, Renauld JAS (1965b) The isolation and structural elucidation of a novel steroidal tumor inhibitor from Acnistus arborescens. J Am Chem Soc 87:5805–5806

    PubMed  CAS  Google Scholar 

  • Kuroyanagi M, Shibata K, Umehara K (1999) Cell differentiation inducing steroids from Withania somnifera. Chem Pharm Bull 47:1646–1649

    CAS  Google Scholar 

  • Kusano G, Takahashi A, Sugiyama K, Nozoe S (1987) Antifungal properties of Solanum alkaloids. Chem Pharm Bull 35:4862–4867

    PubMed  CAS  Google Scholar 

  • Lachman J, Hamouz K, Orsák M, Pivec V (2001) Potato glycoalkaloids and their significance in plant protection and human nutrition – Review. Rostlinná Vyroba 47:181–191

    CAS  Google Scholar 

  • Lal P, Misra L, Sangwan R, Tuli R (2006) New withanolides from fresh berries of Withania somnifera. Z Naturforsch 61b:1143–1147

    Google Scholar 

  • Laurila J, Laakso I, Valkonen JPT, Hiltunen R, Pehu E (1996) Formation of parental-type and novel glycoalkaloids in somatic hybrids between Solanum brevidens and S. tuberosum. Plant Sci 118:145–155

    CAS  Google Scholar 

  • Lavie D, Glotter E, Shvo Y (1965a) Constituents of Withania somnifera. III. The side chain of withaferin A. J Org Chem 30:1774–1778

    CAS  Google Scholar 

  • Lavie D, Glotter E, Shvo Y (1965b) Constituents of Withania somnifera. IV. The structure of withaferin A. J Chem Soc 7517–7531

    Google Scholar 

  • Lavie D, Greenfield S, Glotter E (1966) Constituents of Withania somnifera. VI. The stereochemistry of withaferin A. J Chem Soc C 1753–1756

    Google Scholar 

  • Lee JH, Kiyota N, Ikeda T, Nohara T (2006) Acyclic diterpene glycosides, capsianosides VIII, IX, X, XIII, XV and XVI from the fruits of paprika Capsicum annuum L. var. grossum BAILEY and jalapeño Capsicum annuum L. var. annuum. Chem Pharm Bull 54:1365–1369

    PubMed  CAS  Google Scholar 

  • Lee KR, Kozukue N, Han JS, Park JH, Chang EY, Baek EJ, Chang JS, Friedman M (2004) Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. J Agric Food Chem 52:2832–2839

    PubMed  CAS  Google Scholar 

  • Lee YY, Hashimoto F, Yahara S, Nohara T, Yoshida N (1994) Steroidal glycosides from Solanum dulcamara. Chem Pharm Bull 42:707–709

    CAS  Google Scholar 

  • Lee YY, Hsu FL, Nohara T (1997) Two new soladulcidine glycosides from Solanum lyratum. Chem Pharm Bull 45:1381–1382

    PubMed  CAS  Google Scholar 

  • Leffingwell JC (1999) Basic chemical constituents of tobacco leaf and differences among tobacco types. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 265–284

    Google Scholar 

  • Lenucci MS, Cadinu D, Taurino M, Piro G, Dalessandro G (2006) Antioxidant composition in cherry and high-pigment tomato cultivars. J Agric Food Chem 54:2606–2613

    PubMed  CAS  Google Scholar 

  • Leonart R, Moreira EA (1984) Solasodine in Solanum brusquense SMITH & DOWNS. Tribuna Farmaceut 51–52:10–25

    Google Scholar 

  • Lepschi BJ, Symon DE (1999) A preliminary cladistic analysis of Australasian Solanum and Lycianthes. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – advances in taxonomy and utilization. Royal Botanic Gardens, Kew, pp 161–170

    Google Scholar 

  • Levin RA, Watson K, Bohs L (2005) A four-gene study of evolutionary relationships in Solanum section Acanthophora. Am J Bot 92:603–612

    CAS  Google Scholar 

  • Levin RA, Myers NR, Bohs L (2006) Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae). Am J Bot 93:157–169

    CAS  Google Scholar 

  • Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, Tadmor Y (2005) Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J Agric Food Chem 53:3142–3148

    PubMed  CAS  Google Scholar 

  • Li C, Zheng Y, Sun Y, Wu Z, Liu M (1988) Studies on the odoriferous volatile constituents of the flower of Cestrum nocturnum L. Youji Huaxue 8:357–361

    CAS  Google Scholar 

  • Liang CH, Liu LF, Shiu LY, Huang YS, Chang LC, Kuo KW (2004) Action of solamargine on TNFs and cisplatin-resistant human lung cancer cells. Biochem Biophys Res Commun 322:751–758

    PubMed  CAS  Google Scholar 

  • Liang P, Noller CR (1935) Saponins and sapogenins. III. The sapogenins obtained from Chlorogalum pomeridianum (Liliaceae). J Am Chem Soc 57:525–527

    CAS  Google Scholar 

  • Lin CN, Lu CM, Cheng MK, Gan KH (1990) The cytotoxic principles of Solanum incanum. J Nat Prod 53:513–516

    PubMed  CAS  Google Scholar 

  • Litowitz TL, Clark LR, Soloway RA (1994) 1993 Annual Report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. J Ermerg Med 12:546–584

    Google Scholar 

  • Liu LF, Liang CH, Shiu LY, Lin WL, Lin CC, Kuo KW (2004) Action of solamargine on human lung cancer cells – enhancement of the susceptibility of cancer cells to TNFs. FEBS Lett 577:67–74

    PubMed  CAS  Google Scholar 

  • Lockley WJS, Rees HH, Goodwin TW (1976) Biosynthesis of steroidal withanolides in Withania somnifera. Phytochemistry 15:937–939

    CAS  Google Scholar 

  • Luis JG, Echeverri F, González AG (1994) Acnistins C and D, withanolides from Dunalia solanacea. Phytochemistry 36:1297–1301

    CAS  Google Scholar 

  • Lupashku GA, Sashko YF, Mashchenko NE, Kintya PK, Shvets SA (2004) Immunomodulating activity of steroid glycosides. Dok Ross Akad Sel’skok Nauk (4) 28–31

    Google Scholar 

  • Ma CY, Williams ID, Che CT (1999) Withanolides from Hyoscyamus niger seeds. J Nat Prod 62:1445–1447

    PubMed  CAS  Google Scholar 

  • Mackinney G (1935) J Biol Chem 112:421; fide Baccarini et al. (1965)

    CAS  Google Scholar 

  • Mahmood U, Thakur RS, Blunden G (1983) Neochlorogenin, neosolaspigenin, and solaspigenin from Solanum torvum leaves. J Nat Prod 46:427–428

    CAS  Google Scholar 

  • Maiti PC, Mookherjea S (1965) Hispidogenin. Chem Ind 39:1653

    PubMed  CAS  Google Scholar 

  • Makino B, Kawai M, Ogura T, Nakanishi M, Yamamura H, Butsugan Y (1995) Structural revision of physalin H isolated from Physalis angulata. J Nat Prod 58:1668–1674

    CAS  Google Scholar 

  • Maldonado E, Torres FR, Martínez M, Pérez-Castorena AL (2004) 18-Acetoxywithanolides from Physalis chenopodifolia. Planta Med 70:59–64

    PubMed  CAS  Google Scholar 

  • Maldonado E, AlvaradoVE, Torres FR, Martínez M, Pérez-Castorena AL (2005) Androstane and withanolides from Physalis cinerascens. Planta Med 71:548–553

    PubMed  CAS  Google Scholar 

  • Mander LN (2003) Twenty years of gibberellin research. Nat Prod Rep 20:49–69

    PubMed  CAS  Google Scholar 

  • Maniara G, Laine R, Kuc J (1984) Oligosaccharides from Phytophthora infestans enhance the elicitation of sesquiterpenoid stress metabolites by arachidonic acid in potato. Physiol Plant Pathol 24:177–186

    CAS  Google Scholar 

  • Mann JD (1978) Production of solasodine for the pharmaceutical industry. In: Brady NC (ed) Advances in agronomy, vol 30. Academic Press, New York, pp 207–243

    Google Scholar 

  • Maoka T, Akimoto N, Ishiguro K, Yoshinaga M, Yoshimoto M (2007) Carotenoids with a 5, 6-dihydro-5, 6-dihydroxy-β-end group, from yellow sweet potato “Benimasari”, Ipomoea batatas Lam. Phytochemistry 68:1740–1745

    PubMed  CAS  Google Scholar 

  • Marker RE, Rohrmann E (1939) Sterols. LXXIII. Reactions of digitogenin and gitogenin. J Am Chem Soc 61:2724–2726

    CAS  Google Scholar 

  • Marker RE, Tsukamoto T, Turner DL (1940) Sterols. C. Diosgenin. J Am Chem Soc 62:2542–2543

    CAS  Google Scholar 

  • Marker RE, Wagner RB, Ulshofer PR, Wittbecker EL, Goldsmith DP, Ruof CH (1943) Sterols CLVII. Sapogenins LXIX. Isolation and structures of thirteen new steroidal sapogenins. New sources for known sapogenins. J Am Chem Soc 65:1199–1209

    CAS  Google Scholar 

  • Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222

    CAS  Google Scholar 

  • Marston A, Hostettmann K (1985) Plant molluscicides. Phytochemistry 24:639–652

    CAS  Google Scholar 

  • Mashchenko NE, Lazur’evskii GV, Kintya PK (1977) Steroidal glycosides. XVIII. Structure of funkiosides C and D from Funkia ovata. Khim Prir Soed:123–124

    Google Scholar 

  • Mashchenko NE, Prasol TI, Kintya PK (1995) Steroidal glycosides from potato seeds and their biological activity. Book of abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24, (Pt 1), AGFD-160

    Google Scholar 

  • Matevosyan GL, Kudashov AA, Ezaov AK, Sotnik VG (2001) Effect of plant growth regulators on the growth, development, yield, and quality of tomatoes under greenhouse conditions. Agrokhimiya (11) 49–58

    Google Scholar 

  • Matsuda H, Murakami T, Kishi A, Yoshikawa M (2001) Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 9:1499–1507

    PubMed  CAS  Google Scholar 

  • Matthews D, Jones H, Gans P, Coates S, Smith LMJ (2005) Toxic secondary metabolite production in genetically modified potatoes in response to stress. J Agric Food Chem 53:7766–7776

    PubMed  CAS  Google Scholar 

  • Maxwell A, Pingal R, Reynolds WF, McLean S (1996) 3-Aminospirosolane alkaloids from Solanum arboreum. Phytochemistry 43:913–915

    CAS  Google Scholar 

  • McCue KF, Allen PV, Shepherd LVT, Blake A, Whitworth J, Maccree MM, Rockhold DR, Stewart D, Davies HV, Belknap WR (2006) The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67:1590–1597

    PubMed  CAS  Google Scholar 

  • McCue KF, Allen PV, Shepherd LVT, Blake A, Maccree MM, Rockhold DR, Novy RG, Stewart D, Davies HV, Belknap WR (2007). Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68:327–334

    PubMed  CAS  Google Scholar 

  • McDowall FH (1925) Constituents of Myoporum laetum FORST (“the ngaio”). Part I. J Chem Soc, Transact 127:2200–2207

    CAS  Google Scholar 

  • McGehee DS, Krasowski MD, Fung DL, Wilson B, Gronert GA, Moss J (2000) Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anaesthesiology 93:510–519

    CAS  Google Scholar 

  • Mehmood A, Malik A, Anis I, Khan PM, Riaz M, Makhmoor T, Choudhary MI (2002) Highly oxygenated triterpenes from the roots of Atropa acuminata. Nat Prod Lett 16:371–376

    PubMed  CAS  Google Scholar 

  • Mello JRB (2003) Calcinosis – calcinogenic plants. Toxicon 41:1–12

    PubMed  CAS  Google Scholar 

  • Mesaik MA, Zaheer-ul-Haq, Murad S, Ismail Z, Abdullah NR, Gill HK, Atta-ur-Rahman, Yousaf M, Siddiqui RA, Ahmad A, Choudhary MI (2006) Biological and molecular docking studies on coagulin-H: Human IL-2 novel natural inhibitor. Mol Immun 43:1855–1863

    CAS  Google Scholar 

  • Meyer K, Bernoulli F (1961) Basische Inhaltsstoffe von Solanum paniculatum. Pharmaceut Acta Helv 36:80–96

    CAS  Google Scholar 

  • Mi Q, Lantvit D, Reyes-Lim E. Chai H, Zhao W, Lee IS, Peraza-Sánchez S, Ngassapa LBS, Riswan S, Hollingshead MG, Mayo JG, Farnsworth NR, Cordell GA, Kinghorn AD, Pezzuto JM (2002) Evaluation of the potential cancer chemotherapeutic efficacy of natural product isolates employing in vivo hollow fiber tests. J Nat Prod 65:842–850

    PubMed  CAS  Google Scholar 

  • Miguel MA, Barroso (1994) Accumulation of stress metabolites in cell suspension cultures of Hyoscyamus albus. Phytochemistry 35:371–375

    CAS  Google Scholar 

  • Milanesi L, Monje P, Boland R (2001) Presence of estrogens and estrogen receptor-like proteins in Solanum glaucophyllum. Biochem Biophys Res Commun 289:1175–1179

    PubMed  CAS  Google Scholar 

  • Mimaki Y, Watanabe K, Ando Y, Sakuma C, Sashida Y, Furuya S, Sakagami H (2001) Flavonol glycosides and steroidal saponins from the leaves of Cestrum nocturnum and their cytoxicity. J Nat Prod 64:17–22

    PubMed  CAS  Google Scholar 

  • Mimaki Y, Watanabe K, Sakagami H, Sashida Y (2002) Steroidal glycosides from the leaves of Cestrum nocturnum. J Nat Prod 65:1863–1868

    PubMed  CAS  Google Scholar 

  • Misra L, Lal P, Sangwan RS Sangwan NS, Uniyal GC, Tuli R (2005) Unusually sulfated and oxygenated steroids of Withania somnifera. Phytochemistry 66:2702–2707

    PubMed  CAS  Google Scholar 

  • Moehs CP, Allen PV, Rockhold DR, Stapleton A, Friedman M, Belknap W (1998) The potato genes for solanidine UDP-glucose glucosyltransferase and the use of antisense genes to limit glycoalkaloid biosynthesis. PCT Int Appl, 54 pp

    Google Scholar 

  • Monteagudo ES, Burton G, Gonzalez CM, Oberti JC, Gros EG (1988) 14β, 17β-Dihydroxywithanolides from Jaborosa bergii. Phytochemistry 27:3925–3928

    CAS  Google Scholar 

  • Morales Méndez A, Cázares R, Romo J (1970) Components of Solanum torvum. Rev Latinoam Quim 1:1–6

    Google Scholar 

  • Moreira E, Cecy C, Nakashima T, Cavazzani JR, Miguel OG, Krambeck R (1980) Solasodine in Solanum erianthum D.DON. Tribuna Farmac 48:24–43

    Google Scholar 

  • Moreno-Murillo B, Fajardo MVM, Suárez MM (2001) Cytotoxicity screening of some South American Solanaceae. Fitoterapia 72:680–685

    PubMed  CAS  Google Scholar 

  • Moretti C, Sauvain M, Lavaud C, Massiot G Bravo JA, Muñoz V (1998) A novel antiprotozoal aminosteroid from Saracha punctuata. J Nat Prod 61:1390–1393

    PubMed  CAS  Google Scholar 

  • Morikawa T, Xu F, Matsuda H, Yoshikawa M (2006) Structures of new flavonoids, erycibenins D, E, and F, and NO production inhibitors from Erycibe expansa originating in Thailand. Chem Pharm Bull 54:1530–1534

    PubMed  CAS  Google Scholar 

  • Moser D, Klaiber I, Vogler B, Kraus W (1999) Molluscicidal and antibacterial compounds from Petunia hybrida. Pesticide Sci 55:336–339

    CAS  Google Scholar 

  • Mühlenbeck U, Kortenbusch A, Barz W (2002) In vitro culture and the production of secondary metabolites in Solanum khasianum. In: Nagata T (ed) Biotechnology in agriculture and forestry, vol 51, medicinal and aromatic plants XII, Springer, Berlin, Germany, pp 268–280

    Google Scholar 

  • Müller KO, Börger H (1940) Arb Biol Reichsanst Landwiss Forstwiss (Berlin) 23:189; fide Stoessl et al. (1976), Kojima and Uritani (1981)

    Google Scholar 

  • Murai A, Sato S, Osada A, Katsui N, Masamune T (1982a) Biosynthesis from solavetivone of the phytoalexin rishitin in potato. Implicit role of solavetivone as an activator. J Chem Soc, Chem Commun 32–33

    Google Scholar 

  • Murai A, Abiko A, Ono M, Masamune T (1982b) Synthesis of aubergenone, a sesquiterpenoid phytoalexin from diseases eggplants. Bull Chem Soc Jpn 55:1191–1194

    CAS  Google Scholar 

  • Murai A, Yoshizawa Y, Miyazaki H, Masamune T, Sato N (1987) Biosynthesis of phytotuberin. Chem Lett 1377–1378

    Google Scholar 

  • Murakami K, Saijo R, Nohara T, Tomimatsu T (1981) Studies on the constituents of Solanum plants. I. On the constituents of the stem parts of Solanum lyratum. Yagugaku Zasshi 101:275–279

    CAS  Google Scholar 

  • Murofushi N, Yokota T, Takahashi N (1970) Isolation and structures of gibberellins from immature seeds of Calonyction aculeatum. Agric Biol Chem 34:1436–1438

    CAS  Google Scholar 

  • Murofushi N, Yokota T, Takahashi N (1971) Structures of gibberellins A33 and A35 from immature seeds of Calonyction aculeatum. Agric Biol Chem 35:441–443

    CAS  Google Scholar 

  • Murofushi N, Yokota T, Takahashi N (1973) Structures of kauranoic acids in Calonyction aculeatum. Tetrahedron Lett 789–792

    Google Scholar 

  • Nagafuji S, Okabe H, Akahane H, Abe F (2004) Trypanocidal constituents in plants 4. Withanolides from the aerial parts of Physalis angulata. Biol Pharm Bull 27:193–197

    PubMed  CAS  Google Scholar 

  • Nagaoka T, Goto K, Watanabe A, Sakata Y, Yoshihara T (2001) Sesquiterpenoids in root exudates of Solanum aethiopicum. Z Naturforsch 56c:707–713

    Google Scholar 

  • Nagase H, Nagaoka T, Watanabe A, Sakata Y, Yoshihara T (2001) Sesquiterpenoids from the roots of Solanum aethiopicum. Z Naturforsch 56c:181–187

    Google Scholar 

  • Nakamura T, Komori C, Lee Y, Hashimoto F, Yahara S, Nohara T, Ejima A (1996) Cytotoxic activities of Solanum steroidal glycosides. Biol Pharm Bull 19:564–566

    PubMed  CAS  Google Scholar 

  • Nalbandov O, Yamamoto RT, Fraenkel GS (1964) Nicandrenone, a new compound with insecticidal properties, isolated from Nicandra physalodes. J Agric Food Chem 12:55–59

    CAS  Google Scholar 

  • Nee M (1999) Synopsis of Solanum in the New World. In: Nee M, Symon D, Lester RN, Jessop JP (eds) Solanaceae IV – advances in taxonomy and utilization, Royal Botanic Gardens, Kew, UK, pp 285–333

    Google Scholar 

  • Nee M (2001) Solanaceae systematics for the 21st century. In: Van den Berg RG, Barendse GWM, van der Weerden GM, Mariani C (eds) Solanaceae V – advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, The Netherlands, pp 3–22

    Google Scholar 

  • Neuwinger HD (1996) African ethnobotany – poisons and drugs. Chapman & Hall, London

    Google Scholar 

  • Neuwinger HD (2000) African traditional medicine. A dictionary of plant use and applications. Medpharm Scientific Publ, Stuttgart, Germany

    Google Scholar 

  • Nicotra VE, Ramacciotti NS, Gil RR, Oberti JC, Feresin GE, Guerrero CA, Baggio RF, Garland MT, Burton G (2006) Phytotoxic withanolides from Jaborosa rotacea. J Nat Prod 69:783–789

    PubMed  CAS  Google Scholar 

  • Niero R, Da Silva IT, Tonial GC, Camacho BDS, Gacs-Baitz E, Delle Monache G, Delle Monache F (2006) Cilistepoxide and cilistadiol, two new withanolides from Solanum sisymbrifolium. Nat Prod Res, A 20:1164–1168

    CAS  Google Scholar 

  • Noguchi E, Fujiwara Y, Matsushita S, Ikeda T, Ono M, Nohara T (2006) Metabolism of tomato steroidal glycosides in humans. Chem Pharm Bull 54:1312–1314

    PubMed  CAS  Google Scholar 

  • Noma M, Suzuki F, Gamou K, Kawashima N (1982) Two labdane diterpenoids from Nicotiana raimondii. Phytochemistry 21:395–397

    CAS  Google Scholar 

  • O’Donovan O, Beatty S (2006) Evidence that macular pigment protects against AMD and the relationship between macular pigment and serum and dietary levels of lutein and zeaxanthin. In: Motohashi N (ed) Lutein: prevention and treatment for age-related diseases. Transworld Research Network, Trivandrum, India; pp 257–279

    Google Scholar 

  • Oddo G (1929) Über das Solanin. Ber 62:267–271

    Google Scholar 

  • Oddo G, Colombano A (1905); fide Oddo (1929)

    Google Scholar 

  • Ohmura E, Nakamura T, Tian RH, Yahara S, Yoshimitsu H, Nohara T (1995) 26-Aminocholestanol derivative, a novel key intermediate of steroidal alkaloids, from Solanum abutiloides. Tetrahedron Lett 36:8443–8444

    CAS  Google Scholar 

  • Okamura S, Shingu K, Yahara S, Kohoda H, Nohara T (1992) Constituents of solanaceous plants. XXV. Two new steroidal glycosides from Scopolia japonica MAXIM. Chem Pharm Bull 40:2981–2983

    CAS  Google Scholar 

  • Olmstead RG, Sweere JA, Spangler RF, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV. Royal Botanic Gardens, Kew, pp 111–137

    Google Scholar 

  • Ono H, Kozuka D, Chiba Y, Horigane A, Isshiki K (1997) Structure and cytotoxicity of dehydrotomatine, a minor component of tomato glycoalkaloids. J Agric Food Chem 45:3743–3746

    CAS  Google Scholar 

  • Ono M, Nishimura K, Suzuki K, Fukushima T, Igoshi K, Yoshimitsu H, Ikeda T, Nohara T (2006a) Steroidal glycosides, from the underground parts of Solanum sodomaeum. Chem Pharm Bull 54:230–233

    PubMed  CAS  Google Scholar 

  • Ono M, Takara Y, Egami M, Uranaka K, Yoshimitsu H, Matsushita S, Fujiwara Y, Ikeda T, Nohara T (2006b) Steroidal alkaloid glycosides, esculeosides C and D, from the ripe fruit of Cherry tomato. Chem Pharm Bull 54:237–239

    PubMed  CAS  Google Scholar 

  • Orgell WH, Vaidya KA (1958) Inhibition of human plasma cholinesterase in vitro by extracts of solanaceous plants. Science 128:1136–1137

    PubMed  CAS  Google Scholar 

  • Oritani T, Kiyota H (2003) Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20:414–425

    PubMed  CAS  Google Scholar 

  • Oshima Y, Hikino H, Sahai M, Ray A (1989) Withaperuvin H, a withanolide of Physalis peruviana roots. J Chem Soc, Chem Commun:628–629

    Google Scholar 

  • Osman SF, Herb SF, Fitzpatrick TH, Schmiediche P (1976) Commersonine, a new glycoalkaloid from two Solanum species. Phytochemistry 15:1065–1067

    CAS  Google Scholar 

  • Osorio C, Duque C, Batista-Viera F (2003) Studies on aroma generation in lulo (Solanum quitoense): Enzymatic hydrolysis of glycosides from leaves. Food Chem 81:333–340

    CAS  Google Scholar 

  • Paczkowski C, Kalinowska, Wojciechowski ZA (1998) The 3-O-glucosylation of steroidal sapogenins and alkaloids in eggplant (Solanum melongena); evidence for two separate glucosyltransferases. Phytochemistry 48:1151–1159

    CAS  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291

    PubMed  CAS  Google Scholar 

  • Pearce CM, Skelton NJ, Naylor S, Kanaan R, Kelland J, Oelrichs PB, Sanders JKM, Williams DH (1992) Parquin and carboxyparquin, toxic kaurene glycosides from the shrub Cestrum parqui. J Chem Soc, Perkin Trans 1 (Org Biorg Chem):593–600

    Google Scholar 

  • Pedras MSC, Ahiahonu PWK (2005) Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66:391–411

    PubMed  CAS  Google Scholar 

  • Peng Y, Ma C, Li Y, Leung KSY, Jiang ZH, Zhao Z (2005) Quantification of zeaxanthin dipalmitate and total carotenoids in Lycium fruits (Fructus Lycii). Plant Foods Hum Nutr 60:161–164

    PubMed  CAS  Google Scholar 

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [MILL.] WETTST. subsection Lycopersicon). Am J Bot 88:1888–1902

    CAS  Google Scholar 

  • Percival G (1999) Light-induced glycoalkaloid accumulation of potato tubers (Solanum tuberosum L.). J Sci Food Agric 79:1305–1310

    CAS  Google Scholar 

  • Pérez-Castorena AL, García M, Martínez M, Maldonado E (2004) Physalins from Physalis solanaceous. Biochem Syst Ecol 32:1231–1234

    Google Scholar 

  • Pérez-Castorena AL, Oropeza EF, Vázquez AR, Martínez M, Maldonado E (2006) Labdanes and withanolides from Physalis coztomatl. J Nat Prod 69:1029–1033

    PubMed  Google Scholar 

  • Petersen HW, Mølgaard P, Nyman U, Olsen CE (1993) Chemotaxonomy of the tuber-bearing Solanum species, subsection Potatoe (Solanaceae). Biochem Syst Ecol 21:629–644

    CAS  Google Scholar 

  • Pianzzola MJ, Zarantonelli L, González G, Fraguas LF, Vázquez A (2005) Genetic, phytochemical and biochemical analyses as tools for biodiversity evaluation of wild accessions of Solanum commersonii. Biochem Syst Ecol 33:67–78

    CAS  Google Scholar 

  • Piccinelli AL, Salazar de Ariza J, Miranda RV, Mora SQ, Aquino R, Rastrelli L (2005) Three new furostanol saponins from the leaves of Lycianthes synanthera (“chomte”), an edible Mesoamerican plant. J Agric Food Chem 53:289–294

    PubMed  CAS  Google Scholar 

  • Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 311:808–811

    PubMed  CAS  Google Scholar 

  • Pokrovskii AA (1956) The effect of the alkaloids of the sprouting potato on cholinesterase. Biokhimiia 21:683–688

    PubMed  CAS  Google Scholar 

  • Pomilio AB, González MD, Eceizabarrena CC (1996) 7, 8-Dihydroajugasterone C, norhygrine and other constituents of Nierembergia hippomanica. Phytochemistry 41:1393–1398

    CAS  Google Scholar 

  • Pongprayoon U, Baeckstroem P, Jacobsson U, Lindstroem M, Bohlin L (1992) Antispasmodic activity of β-damascenone and E-phytol isolated from Ipomoea pes-caprae. Planta Med 58:19–21

    PubMed  CAS  Google Scholar 

  • Prelog V, Jeger O (1953) The chemistry of Solanum and Veratrum Alkaloids. In: Manske RHF, Holmes HL (eds) The alkaloids – chemistry and physiology, vol 3. Academic Press, New York, pp 247–314

    Google Scholar 

  • Prelog V, Jeger O (1960) Steroidal alkaloids: The Solanum group. In: Manske RHF (ed) The alkaloids – chemistry and physiology, vol 7. Academic Press, New York, pp 343–361

    Google Scholar 

  • Prelog V, Szpilfogel S (1942) Über Steroide und Sexualhormone. LXXIX. Über das 2-Äthyl-5-methyl-pyridine, ein Dehydrierungsprodukt des Solanidins. Helv Chim Acta 25:1306–1313

    CAS  Google Scholar 

  • Prema TP, Raghuramulu N (1996) Vitamin D3 and its metabolites in the tomato plant. Phytochemistry 42:617–620

    PubMed  CAS  Google Scholar 

  • Purcell AE, Walter WM Jr (1968) Carotenoids of centennial variety sweet potato, Ipomoea batatas. J Agric Food Chem 16:769–770

    CAS  Google Scholar 

  • Quyen IT, Khoi NH, Suong NN, Schreiber K, Ripperger H (1987) Steroid alkaloids and yamogenin from Solanum spirale. Planta Med 53:292–293

    Google Scholar 

  • Raguso RA, Levin RA, Foose SE, Holmerg MW, McDade LA (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284

    PubMed  CAS  Google Scholar 

  • Raguso RA, Schlumpberger BO, Kaczorowski RL, Holtsford TP (2006) Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes. Phytochemistry 67:1931–1942

    PubMed  CAS  Google Scholar 

  • Raker CM, Spooner DM (2002) Chilean tetraploid cultivated potato, Solanum tuberosum, is distinct from the Andean populations: Microsatellite data. Crop Sci 42:1451–1458

    Google Scholar 

  • Raulais D, Billet D (1970) Sur un nouveau sesquiterpène, isolé du bois de Humbertia madagascariensis LAMARCK. Bull Soc Chim France 2401–2404

    Google Scholar 

  • Ray AB, Gupta M (1994) Withasteroids, a growing group of naturally occurring steroidal lactones. In: Zechmeister L, Herz W, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products, vol 63. Springer, Wien/A, pp 1–106

    Google Scholar 

  • Reid WW (1979) The diterpenes of Nicotiana species and N. tabacum cultivars. In: Hawkes JG, Lester RN, Skelding AD (eds) The Biology and Taxonomy of the Solanaceae. Linn Soc Symposium Series No 7, Academic Press, London, pp 273–278

    Google Scholar 

  • Renault S, De Lucca AJ, Boue S, Bland JM, Vigo CB, Selitrennikoff CP (2003) CAY-1, a novel antifungal compound from Cayenne pepper. Med Mycol 41:75–82

    PubMed  CAS  Google Scholar 

  • Ripperger H (1990) Steroid alkaloids and sapogenins from some Solanum and a Lycianthes species. Pharmazie 45:381–382

    Google Scholar 

  • Ripperger H (1998) Solanum steroid alkaloids – an update. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 12. Elsevier Science, Amsterdam, The Netherlands, pp 103–185

    Google Scholar 

  • Ripperger H, Kamperdick C (1998) First isolation of physalins from the genus Saracha of Solanaceae. Pharmazie 53:144–145

    CAS  Google Scholar 

  • Ripperger H, Porzel A (1992) 2α-Hydroxysoladulcidine from Lycianthes biflora. Phytochemistry 31:725–726

    CAS  Google Scholar 

  • Ripperger H, Porzel A (1994) Steroidal alkaloid glycosides from Solanum robustum. Liebigs Ann Chem 517–520

    Google Scholar 

  • Ripperger H, Porzel A (1997) Steroidal alkaloid glycosides from Solanum suaveolens. Phytochemistry 46:1279–1282

    PubMed  CAS  Google Scholar 

  • Ripperger H, Schreiber K (1981) Solanum steroid alkaloids. In: Manske RHF, Rodrigo RGA (eds) The alkaloids – chemistry and physiology, vol 19. Academic Press, New York, pp 81–191

    Google Scholar 

  • Ripperger H, Budzikiewicz H, Schreiber K (1967a) Jurubin, ein stickstoff-haltiges Steroidsaponin neuartigen Strukturtyps aus Solanum paniculatum L.; über die Struktur von Paniculidin. Ber 100:1725–1740

    CAS  Google Scholar 

  • Ripperger H, Schreiber K, Budzikiewicz H (1967b) Isolierung von Neochlorogenin und Paniculogenin aus Solanum paniculatum L. Ber 100:1741–1752

    CAS  Google Scholar 

  • Roberts DL, Rowland RL (1962) Macrocyclic diterpenes α- and β-4, 8, 13-duvatriene-1, 3-diols from tobacco. J Org Chem 27:3989–3995

    CAS  Google Scholar 

  • Roddick JG (1989) The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloids and their aglycones. Phytochemistry 28:2631–2634

    CAS  Google Scholar 

  • Roddick JG, Rijnenberg AL, Weissenberg M (1990) Membrane disrupting properties of the steroidal glycoalkaloids solasonine and solamargine. Phytochemistry 29:1513–1518

    CAS  Google Scholar 

  • Roddick JG, Weissenberg M, Leonard AL (2001) Membrane disruption and enzyme inhibition by naturally-occurring and modified chacotriose-containing Solanum steroidal glycoalkaloids. Phytochemistry 56:603–610

    PubMed  CAS  Google Scholar 

  • Römer S, Fraser PD (2005) Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta 221:305–308

    PubMed  Google Scholar 

  • Rozkrutowa B (1987) Phytochemical investigation on Browallia viscosa. FECS Int Conf Chem Biotechnol Biol Act Nat Prod [Proc], 3rd, 1985. VCH, Weinheim, Germany, pp 178–181

    Google Scholar 

  • Rozkrutowa B (1991) Constituents of Browallia grandiflora. Fitoterapia 62:459

    CAS  Google Scholar 

  • Rüttimann A, Englert G, Mayer H, Moss GP, Weedon BCL (1983) Synthese von (3R, 3,S, 5,R)-Capsanthin, (3S, 5R, 3,S, 5,R)-Capsorubin, (3)S, 5,R)-Kryptocapsin und einigen verwandten Verbindungen. Ein neuer Zugang zu optisch aktiven Fünfring-Carotinoidbausteinen durch Hydroborierung. Helv Chim Acta 66:1939–1960

    Google Scholar 

  • Saez J, Cardona W, Espinal D, Blair S, Mesa J, Bocar M, Jossang A (1998) Five new steroids from Solanum nudum. Tetrahedron 54:10771–10778

    CAS  Google Scholar 

  • Sahu NP, Chakravarti RN (1971) Constituents of the leaves of Argyreia speciosa. Phytochemistry 10:1949

    CAS  Google Scholar 

  • Saijo R, Murakami K, Nohara T, Tomimatsu T, Sato A, Matsuoka K (1982) On the constituents of the immature berries of Solanum nigrum L. Yakugaku Zasshi 102:300–305

    PubMed  CAS  Google Scholar 

  • Saijo R, Fuke C, Murakami K, Nohara T, Tomimatsu T (1983) Two steroidal glycosides, aculeatiside A and B from Solanum aculeatissimum. Phytochemistry 22:733–736

    CAS  Google Scholar 

  • Saiyed Z, Kanga DD (1936) Fruits of Solanum xanthocarpum. Proc Indian Acad Sci 4A:255–260

    CAS  Google Scholar 

  • Saleh M (1973) Steroidal constituents of Solanum arundo. Planta Med 23:377–378

    PubMed  CAS  Google Scholar 

  • Sander H (1963a) Chemische Differenzierung innerhalb der Art Solanum dulcamara L. Planta Med. 11:303–316

    CAS  Google Scholar 

  • Sander H (1963b) Über Solanum dulcamara L. 7. Mitt.: Abbau von Spirosolanolglykosiden in reifenden Früchten. Planta Med. 11:23–36

    CAS  Google Scholar 

  • Sang S, Xia Z, Mao S, Lao A, Chen Z (2000) Studies on chemical constituents in seed of Allium tuberosum ROTTL. Zhongguo Zhonggyao Zazhi 25:286–288

    CAS  Google Scholar 

  • Sannai A, Fujimori T, Kato K (1982) Isolation of (−)-1, 2-dehydro-α-cyperone and solavetivone from Lycium chinense. Phytochemistry 21:2986–2987

    CAS  Google Scholar 

  • Sarmento da Silva TM, Braz-Filho R, de Carvalho MG, Agra M (2002) 1, 2, 3, 4-Tetrahydro-2-methyl-β-carboline and solavetivone from Solanum jabrense. Biochem Syst Ecol 30:1083–1085

    CAS  Google Scholar 

  • Sarmento da Silva TM, Agra M, Bhattacharyya J (2005) Studies on the alkaloids of Solanum of northeastern Brazil. Rev Brasil Farmacog 15:292–293

    Google Scholar 

  • Sarquis JI, Coria NA, Aguilar I, Rivera A (2000) Glycoalkaloid content in Solanum species and hybrids from a breeding program for resistance to late blight (Phytophthora infestans). Am J Potato Res 77:295–302

    CAS  Google Scholar 

  • Sato Y, Latham HG Jr (1953) The isolation of diosgenin from Solanum xanthocarpum. J Am Chem Soc 75:6067

    CAS  Google Scholar 

  • Sato Y, Latham HG Jr, Briggs LH, Seelye RN (1957) Conversion of tomatidine and solasodine into neotigogenin and diosgenin and into a common constituent, 5α-22, 25-epoxyfurostan-3β-ol. J Am Chem Soc 79:6089–6090

    CAS  Google Scholar 

  • Sattler E (1912) Beiträge zur Lebensgeschichte der Tomatenpflanze. Tübingen; fide Czapek (1925)

    Google Scholar 

  • Savchenko T, Whiting P, Germade A, Dinan L (2000) Ecdysteroid agonist and antagonist activities in species of the Solanaceae. Biochem Syst Ecol 28:403–419

    PubMed  CAS  Google Scholar 

  • Schlittler E, Uehlinger H (1952) Das Sterolalkaloid Solanocapsin. Helv Chim Acta 35:2043–2044

    Google Scholar 

  • Schmeda-Hirschmann G, Papastergiou F (1994) Sesquiterpenes from Fabiana imbricata. Phytochemistry 36:1439–1442

    CAS  Google Scholar 

  • Schmeda-Hirschmann G, Jordan M, Gerth A, Wilken D, Hormazabal E, Tapia AA (2004) Secondary metabolite content in Fabiana imbricata plants and in vitro cultures. Z Naturforsch 59c:48–54

    Google Scholar 

  • Schmiedeberg O (1875) [Digitonin] Arch Exp Path 3:18; fide Czapek (1925)

    Google Scholar 

  • Schneider JA, Nakanishi K (1983) A new class of sweet potato phytoalexins. J Chem Soc Chem Commun 353–355

    Google Scholar 

  • Schneider JA, Yoshihara K, Nakanishi K (1983) The absolute configuration of (+)-ipomeamarone. J Chem Soc Chem Commun 352–353

    Google Scholar 

  • Schneider JA, Lee J, Naya Y, Nakanishi K, Oba K, Uritani I (1984) The fate of the phytoalexin ipomeamarone: Furanoterpenes and butenolides from Ceratocystis fimbriata-infected sweet potatoes. Phytochemistry 23:759–764

    CAS  Google Scholar 

  • Schöpf C, Herrmann R (1933) Zur Kenntnis des Solanidins. Ber 66:298–305

    Google Scholar 

  • Schreiber K (1957) Isolierung von ∆5-Tomatidenol-(3β) und Yamogenin aus Solanum tuberosum. Angew Chem 69:483

    CAS  Google Scholar 

  • Schreiber K (1958a) Die Alkaloide von Solanum dulcamara L. Planta Med. 6:94–97

    CAS  Google Scholar 

  • Schreiber K (1958b) Über das Vorkommen von Solasodinglykosiden in Solanum nigrum L. und ihre industrielle Verwertung. Planta Med 6:435–439

    CAS  Google Scholar 

  • Schreiber K (1963) Über die Alkaloidglykoside knollentragender Solanum-Arten. Kulturpflanze 11:422–450

    CAS  Google Scholar 

  • Schreiber K (1968) Steroid alkaloids: The Solanum group. In: Manske RHF (ed) The alkaloids – chemistry and physiology, vol 10. Academic Press, New York, pp 1–192

    Google Scholar 

  • Schreiber K, Aurich O (1966) Isolation of secondary alkaloids and 3-hydroxy-5-pregn-16-en-20-one from Lycopersicon pimpinellifolium. Phytochemistry 5:707–712

    CAS  Google Scholar 

  • Schreiber K, Ripperger H (1960) Struktur des Solanocapsins. Experientia 16:536

    PubMed  CAS  Google Scholar 

  • Schreiber K, Ripperger H (1962) Isolierung von Solanocapsin aus Solanum pseudocapsicum, Solanum capsicastrum und Solanum hendersonii. Z Naturforsch 17b:217–221

    Google Scholar 

  • Schreiber K, Ripperger H (1968) Isolierung von Jurubin, Neochlorogenin und Paniculogenin aus Solanum torvum. Kulturpflanze 15:199–204

    CAS  Google Scholar 

  • Schulz D, Eilert U, Willker W, Leibfritz D, Ehmke A (1992) Steroidal glycoalkaloids from Solanum triflorum. Abstract Book, 40th Annual Congress on Medicinal Plant Research, Trieste, Italy, p 133

    Google Scholar 

  • Sembdner G, Schreiber K (1965) Über die Gibberelline von Nicotiana tabacum L. Phytochemistry 41:49–56

    Google Scholar 

  • Severson RF, Jackson DM, Johnson AW, Sisson VA, Stephenson MG (1991) Ovipositional behaviour of tobacco budworm and tobacco hornworm. Effects of cuticular components from Nicotiana species. ACS Sympos Ser vol 449, American Chemical Society, Washington, DC, pp 264–277

    Google Scholar 

  • Severson RF, Eckel RVW, Jackson DM, Sisson VA, Stephenson MG (1994) Aphicidal activity of cuticular components from Nicotiana tabacum. ACS Sympos Ser vol 551, American Chemical Society, Washington, DC, pp 172–190

    Google Scholar 

  • Sharma SC, Chand R, Sati OP, Sharma AK (1983) Oligofurostanosides from Solanum nigrum. Phytochemistry 22:1241–1244

    CAS  Google Scholar 

  • Shchelochkova AP, Vollerner YS, Koshoev KK (1980) Tomatoside A from Lycopersicum esculentum seeds. Khim Prir Soed 533–540

    Google Scholar 

  • Shih M, Kuc J, Williams EB (1973) Suppression of steroid glycoalkaloid accumulation as related to rishitin accumulation in potato tubers. Phytopathology 63:821–826

    CAS  Google Scholar 

  • Shingu K, Fujii H, Mizuki K, Ueda I, Yahara S, Nohara T (1994) Ergostane glycosides from Petunia hybrida. Phytochemistry 36:1307–1314

    PubMed  CAS  Google Scholar 

  • Shvets SA, Kintya PK, (1984) Steroid glycosides. Structure of melongoside K from the seeds of Solanum melongena. Khim Prir Soed:668–669

    Google Scholar 

  • Shvets SA, Kintya PK, Gutsu ON (1994) Steroidal glycosides from seeds of Nicotiana tabacum. I. Structure of nicotianosides A, B, and E. Khim Prir Soed: 737–742

    Google Scholar 

  • Shvets SA, Latsterdis NV, Kintya PK (1995a) A chemical study on the steroidal glycosides from Atropa belladonna L. seeds. Book of abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24, (Pt 1), AGFD-132

    Google Scholar 

  • Shvets SA, Kintya PK, Gutsu ON (1995b) Steroidal glycosides from Nicotiana tabacum L. seeds and their biological activity. Book of abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24, (Pt 1), AGFD-161

    Google Scholar 

  • Shvets SA, Naibi MA, Kintya PK (1995c) Steroidal glycosides from Petunia hybrida. seeds and their biological activity. Book of abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24, (Pt 1), AGFD-163

    Google Scholar 

  • Shvets SA, Kintya PK, Naibi MA (1995d) Steroidal glycosides from Petunia hybrida seeds. II. Structure of petuniosides I, L and N. Khim Prir Soed:247–252

    Google Scholar 

  • Shvets SA, Kintya PK, Gutsu ON, Grishkovets VI (1995e) Steroidal glycosides of Nicotiana tabacum seeds. II. Structure of nicotianosides C and F. Khim Prir Soed:396–401

    Google Scholar 

  • Shvets SA, Latsterdis NV, Kintya PK (1996a) A chemical study on the steroidal glycosides from Atropa belladonna L. seeds. Adv Exp Med Biol 404:475–483

    PubMed  CAS  Google Scholar 

  • Shvets SA, Gutsu ON, Kintya PK (1996b) Steroidal glycosides from Nicotiana tabacum L. seeds and their biological activity. Adv Exp Med Biol 405:247–257

    PubMed  CAS  Google Scholar 

  • Shvets SA, Kintya PK, Gutsu ON (1996c) The influence of steroid glycosides from Solanum melongena L. and Nicotiana tabacum L. seeds on the yield capacity and quality of tomato fruits. Special Publication – Royal Society of Chemistry, 179 (Agri-Food Quality):104–106

    Google Scholar 

  • Silva M, Mancinelli P, Cheul M (1962) Chemical study of Cestrum parqui. J Pharm Sci 51:289

    PubMed  CAS  Google Scholar 

  • Silva TMS, Batista MM, Câmara CA, Agra MF (2005) Molluscicidal activity of some Brazilian Solanum spp. (Solanaceae) against Biomphalaria glabrata. Ann Trop Med Parasit 99:4119–4125

    Google Scholar 

  • Silva TMS, Câmara CA, Agra MF, de Carvalho MG, Frana MT, Brandoline SVPB, Paschoal LS, Braz-Filho R (2006) Molluscicidal activity of Solanum spp. of the Northeast of Brazil on Biomphalaria glabrata. Fitoterapia 77:449–452

    PubMed  Google Scholar 

  • Sinden SL, Sanford LL, Osman SF (1980) Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense BITTER. Am Potato J 57:331–343

    CAS  Google Scholar 

  • Singh S, Khanna NM, Dhar MM (1974) Solaplumbin, a new anticancer glycoside from Nicotiana plumbaginifolia. Phytochemistry 13:2020–2022

    CAS  Google Scholar 

  • Sinha SC, Ali A, Bagchi A, Sahai M, Ray AB (1987) Physalindicanols, new biogenetic precursors of C28-steroidal lactones from Physalis minima var. indica. Planta Med 53:55–57

    PubMed  CAS  Google Scholar 

  • Skliar M, Curino A, Milanesi L, Benassati S, Boland R (2000) Nicotiana glauca: Another plant species containing vitamin D3 metabolites. Plant Sci 156:193–199

    PubMed  CAS  Google Scholar 

  • Smith DB, Roddick JG, Jones JL (2001) Synergism between the potato glycoalkaloids α-chaconine and α-solanine in inhibition of snail feeding. Phytochemistry 57:229–234

    PubMed  CAS  Google Scholar 

  • Soares MB, Bellintani MC, Ribeiro IM, Tomassini TC, Ribeiro dos Santos R (2003) Inhibition of macrophage activation and lipopolysaccharide-induced death by seco-steroids purified from Physalis angulata L. Europ J Pharmacol 459:107–112

    CAS  Google Scholar 

  • Soltys A, Wallenfels K (1936) Solanin und Solanidin. Ber 69b:811–818

    CAS  Google Scholar 

  • Soulé S, Güntner C, Vázquez A, Argandoña V, Ferreira F, Moyna P (1999) Effect of Solanum glycosides on the aphid Schizaphis graminum. J Chem Ecol 25:369–374

    Google Scholar 

  • Soulé S, Güntner C, Vázquez A, Argandoña V, Moyna P, Ferreira F (2000) An aphid repellent glycoside from Solanum laxum. Phytochemistry 55:217–222

    Google Scholar 

  • Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot 80:676–688

    CAS  Google Scholar 

  • Sticher O (2007) Triterpene einschließlich Steroide. In: Hänsel R, Sticher O (eds) Pharmakognosie – Phytopharmazie 8th edn. Springer, Heidelberg, Germany, pp 916–1022

    Google Scholar 

  • Stoessl A, Unwin CH, Ward EWB (1972) Capsidiol, an antifungal compound from Capsicum frutescens. Phytopathol Z 74:141–152

    CAS  Google Scholar 

  • Stoessl A, Stothers JB, Ward EWB (1975) A 2, 3-dihydroxygermacrene and other stress metabolites of Datura stramonium. J Chem Soc, Chem Comm:431–432

    Google Scholar 

  • Stoessl A, Stothers JB, Ward, EWB (1976) Sesquiterpenoid stress compounds of the Solanaceae. Phytochemistry 15:855–872

    CAS  Google Scholar 

  • Stürckow B, Löw I (1961) Die Wirkungen einiger Solanaceen-Alkaloidglykoside auf den Kartoffelkäfer. Entomol Expt Appl 4:133–142

    Google Scholar 

  • Su BN. Gu JQ, Kang YH, Park EJ, Pezzuto JM, Kinghorn AD (2004) Induction of phase II enzyme, quinone reductase, by withanolides and norwithanolides from solanaceous species. Mini-Rev Org Chem 1:115–123

    CAS  Google Scholar 

  • Subbaraju GV, Vanisree M, Rao CV, Sivaramakrishna C, Sridhar P, Jayaprakasam B, Nair MG (2006) Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. J Nat Prod 69:1790–1792

    PubMed  CAS  Google Scholar 

  • Sun LX, Fu WW, Li W, Bi KS, Wang MW (2006) Diosgenin glucuronides from Solanum lyratum and their cytoxicity against tumor cell lines. Z Naturforsch 61c:171–176

    Google Scholar 

  • Suzuki H, Noma M, Kawashima N (1983) Two labdane diterpenoids from Nicotiana setchellii. Phytochemsitry 22:1294–1295

    CAS  Google Scholar 

  • Suzuki Y, Yamaguchi I, Takahashi N (1985) Identification of castasterone and brassinone from immature seeds of Pharbitis purpurea. Agric Biol Chem 49:49–54

    CAS  Google Scholar 

  • Syu WJ, Don MJ, Lee GH, Sun CM (2001) Cytotoxic and novel compounds from Solanum indicum. J Nat Prod 64:1232–1233

    PubMed  CAS  Google Scholar 

  • Szafranek B, Chrapkowska K, Pawiñska M, Szafranek J (2005) Analysis of leaf surface sesquiterpenes in potato varieties. J Agric Food Chem 53:2817–2822

    PubMed  CAS  Google Scholar 

  • Szafranek B, Chrapkowska K, Waligóra D, Palavinskas R, Banach A, Szafranek J (2006) Leaf surface sesquiterpene alcohols of the potato (Solanum tuberosum) and their influence on Colorado beetle (Leptinotarsa decemlineata SAY feeding. J Agric Food Chem 54:7729–7734

    PubMed  CAS  Google Scholar 

  • Tagawa C, Okawa M, Ikeda T, Yoshida T, Nohara T (2003) Homo-cholestane glycosides from Solanum aethiopicum. Tetrahedron Lett 44:4839–4841

    CAS  Google Scholar 

  • Takahashi N, Yokota T, Murofushi N, Tamura S (1969) Structures of gibberellins A26 and A27 in immature seeds of Pharbitis nil. Tetrahedron Lett 2077–2080

    Google Scholar 

  • Takahashi N, Murofushi N, Yokota T (1972) Gibberellins in immature seed of moonflower (Calonyction aculeatum). Plant Growth Subst., Proc Int Conf, 7th, Springer, New York, pp 175–180

    Google Scholar 

  • Telek L, Delphin H, Cabanillas E (1977) Solanum mammosum as a source of solasodine in the lowland tropics. Econ Bot 31:120–128

    CAS  Google Scholar 

  • Temme F (1883) fide Baccarini et al. (1965)

    Google Scholar 

  • Teuscher E, Lindequist U (1994) Biogene Gifte – Biologie, Chemie, Pharmakologie, 2nd edn. Gustav Fischer Stuttgart, Germany

    Google Scholar 

  • Teuscher E, Melzig MF, Lindequist U (2004) Biogene Arzneimittel, 6th edn. Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany

    Google Scholar 

  • Tian RH, Ohmura E, Yoshimitsu H, Nohara T, Matsui M (1996) Cholestane glycosides from Solanum abutiloides. Chem Pharm Bull 44:1119–1121

    PubMed  CAS  Google Scholar 

  • Tian RH, Ohmura E, Matsui M, Nohara T (1997) Abutiloside A, a 26-acylamino-3β, 16α-dihydroxy-5α-cholestan-22-one glycoside from Solanum abutiloides. Phytochemistry 44:723–726

    PubMed  CAS  Google Scholar 

  • Tietze LF, Wegner C, Wulff C (1999) First total synthesis and determination of the absolute configuration of the stress factor (+)-hydroxymyoporone. Chem Eur J 5:2885–2889

    CAS  Google Scholar 

  • Tingey WM (1984) Glycoalkaloids as pest resistance factors. Am Potato J 61:157–167

    CAS  Google Scholar 

  • Tingey WM, Mackenzie JD, Gregory P (1978) Total foliar glycoalkaloids and resistance of wild potato species to Empoasca fabae (HARRIS). Am Potato J 55:577–585

    CAS  Google Scholar 

  • Tofern B, Jenett-Siems K, Siems K, Jakupovic J, Eich E (1999) Arcapitins A – C, first dammarane-type triterpenes from the Convolvulaceae. Z Naturforsch 54c:1005–1010

    Google Scholar 

  • Tohda C, Komatsu K, Kuboyama T (2005) Scientific basis for the anti-dementia drugs of constituents from Ashwagandha (Withania somnifera). J Tradit Med 22 (Suppl 1) 176–182

    CAS  Google Scholar 

  • Tomiyama K, Sakuma T, Ishizaka N, Sato N, Katsui N, Takasugi M, Masamune T (1968) Phytopathology 58:115; fide Stoessl et al. (1983)

    CAS  Google Scholar 

  • Topal U, Sasaki M, Goto M, Hayakawa K (2006) Extraction of lycopene from tomato skin with supercritical carbon dioxide: Effect of operating conditions and solubility analysis. J Agric Food Chem 54:5604–5610

    PubMed  CAS  Google Scholar 

  • Torres R, Modak B, Faini F (1988) (25R)-Isonuatigenin, an unusual steroidal sapogenin as taxonomic marker in Cestrum parqui and Vestia lycioides. Bol Soc Chil Quim 33:239–241

    CAS  Google Scholar 

  • Trease D, Evans WC (2002) Pharmacognosy, 15th edn. W.B.Saunders, Edinburgh, UK, p 293

    Google Scholar 

  • Trumbo PR, Ellwood KC (2006) Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: An evaluation using the Food and Drug Administration’s evidence-based review system for health claims. Am J Clin Nutr 84:971–974

    PubMed  CAS  Google Scholar 

  • Tsay YH, Silverton JV, Beisler JA, Sato Y (1970) The structure of carpesterol. J Am Chem Soc 92:7005–7006

    Google Scholar 

  • Tschesche R, Brennecke HR (1980) Side chain functionalization of cholesterol in the biosynthesis of solasodine in Solanum laciniatum. Phytochemistry 19:1449–1451

    CAS  Google Scholar 

  • Tschesche R, Gutwinski H (1975) Steroidsaponine mit mehr als einer Zuckerkette. X. Capsicosid, ein bisdesmosidisches 22-Hydroxyfurostanolglycosid aus den Samen von Capsicum annuum L. Ber 108:265–272

    CAS  Google Scholar 

  • Tschesche R, Richert H (1964) Über Saponine der Spirostanolreihe – XI. Nuatigenin, ein Chologenin-Analogon des Pflanzenreiches. Tetrahedron 20:387–398

    CAS  Google Scholar 

  • Tschesche R, Spindler M (1978) Zur Biogenese des Aza-Oxa-Spiran-Systems der Steroidalkaloide vom Spirosolan-Typ in Solanaceen. Phytochemistry 17:251–255

    CAS  Google Scholar 

  • Tschesche R, Wulff G (1961) Saponine der Spirostanolreihe. VII. Über Digalogenin, ein neues Sapogenin aus den Samen von Digitalis purpurea. Ber 94:2019–2026

    CAS  Google Scholar 

  • Tschesche R, Wulff G (1963) Über Saponine der Spirostanolreihe – IX. Die Konstitution des Digitonins. Tetrahedron 19:621–634

    CAS  Google Scholar 

  • Tschesche R, Goossens B, Töpfer A (1976) Zur Einführung des Stickstoffs und zum gemeinsamen Vorkommen von 25(R)- und 25(S)-Steroidalkaloiden in Solanaceen. Phytochemistry 15:1387–1389

    CAS  Google Scholar 

  • Tukalo EA (1964) Investigation of different varieties of the Solanaceae family for the presence of compounds with steroid structure. Izuch Ispol’z Lekarstv Rastit Resursov SSR (Leningrad: Med.): 288–290

    Google Scholar 

  • Tutin F, Clewer HWB (1914) Constituents of Solanum angustifolium; isolation of a new gluco-alkaloid, solangustine. J Chem Soc Transact 105:559–576

    CAS  Google Scholar 

  • Tuzson P, Kiss Z (1957) Alkaloids of Solanum. II. Soladulcidine. Acta Chim Acad Sci Hungar 12:31–34

    CAS  Google Scholar 

  • Uegaki R, Fujimori T, Kubo S, Kato K (1983) Sesquiterpenoid stress compounds from Nicotiana rustica inoculated with TMV. Phytochemistry 22:1193–1195

    CAS  Google Scholar 

  • Uegaki R, Fujimori T, Kubo S, Kato K (1985) Stress compounds from Nicotiana rustica inoculated with TMV. Phytochemistry 24:2445–2447

    CAS  Google Scholar 

  • Uegaki R, Kubo S, Fujimori T (1988) Stress compounds in the leaves of Nicotiana undulata induced by TMV inoculation. Phytochemistry 27:365–368

    CAS  Google Scholar 

  • Usubillaga AN, Meccia G (1987) Steroidal sapogenins from Solanum scorpioideum. J Nat Prod 50:636–641

    CAS  Google Scholar 

  • Usubillaga A, Aziz I, Tettamanzi MC, Waibel R, Achenbach H (1997) Steroidal alkaloids from Solanum sycophanta. Phytochemistry 44:537–543

    CAS  Google Scholar 

  • Usubillaga A, Khouri N, Baptista JC, Bahsas A (2005) New Acnistins from Acnistus arborescens. Rev Latinoam Quim 33:121–127

    CAS  Google Scholar 

  • Van Gelder WMJ, Scheffer JJC (1991) Transmission of steroidal glycoalkaloids from Solanum vernei to the cultivated potato. Phytochemistry 30:165–168

    CAS  Google Scholar 

  • Vázquez A, Ferreira F, Moyna P, Kenne L (1999) Structural elucidation of glycosides from Solanum amygdalifolium. Phytochem Anal 10:194–197

    Google Scholar 

  • Veleiro AS, Trocca CE, Burton G, Oberti (1992) A phenolic withanolide from Jaborosa leucotricha. Phytochemistry 31:2550–2551

    CAS  Google Scholar 

  • Veleiro AS, Oberti JC, Burton G (2005) Chemistry and bioactivity of withanolides from South American Solanaceae. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 32 (part L). Elsevier, Amsterdam, NL, pp 1019–1052

    Google Scholar 

  • Veras ML, Bezerra MZB, Lemos TLG, Uchoa DEA, Braz-Filho R, Chai HB, Cordell GA, Pessoa ODL, (2004a) Cytotoxic withaphysalins from the leaves of Acnistus arborescens. J Nat Prod 67:710–713

    PubMed  CAS  Google Scholar 

  • Veras ML, Bezerra MZB, Braz-Filho R, Pessoa ODL, Montenegro EC, Pessoa CdO, de Moraes MO, Costa-Lotufo LV (2004b) Cytotoxic epimeric withaphysalins from leaves of Acnistus arborescens. Planta Med 70:551–555

    PubMed  CAS  Google Scholar 

  • Verdonk JC, de Vos CHR, Verhoeven HA, Haring MA, van Tunen AJ, Schuurink RC (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62:997–1008

    PubMed  CAS  Google Scholar 

  • Vidal Aldana M, Noguiera Lima C (1999) Isolation and characterization of a glycoside from fluid extracts of Solanum americanum MILL. Afinidad 56:393–396

    CAS  Google Scholar 

  • Vijayan P, Prashanth HC, Vijayaraj P, Dhanaraj SA, Badami S, Suresh B (2003) Hepatoprotective effect of the total alkaloid fraction of Solanum pseudocapsicum leaves. Pharmaceut Biol 41:443–448

    CAS  Google Scholar 

  • Volkov RA, Komarova NY, Panchuk II, Hemleben V (2003) Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum). Mol Phylogenet Evol 29:187–202

    PubMed  CAS  Google Scholar 

  • Volynets AP, Shukanov VP, Goncharik NN (2002) Influence of steroid glycosides on grain productivity and sowing qualities of spring wheat seeds (Triticum aestivum L.). Vestsi Natsy Akad Navuk Belarusi, Ser Biyalag Navuk (3):10–12

    Google Scholar 

  • Wagner G (1999) Leaf surface chemistry. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 292–303

    Google Scholar 

  • Wahlberg I, Eklund AM (1992) Cembranoids, pseudopteranoids, and cubitanoids of natural occurrence. In: Zechmeister L, Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 59. Springer Verlag, Wien/A, pp 141–294

    Google Scholar 

  • Wahlberg I, Ringberger T (1999) Smokeless tobacco. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 452–460

    Google Scholar 

  • Wahlberg I, Wallin I, Narbonne C, Nishida T, Enzell CR (1981) Note on the stereostructure of thunbergol (isocembrol) and 4-epiisocembrol. Acta Chem Scand B35:65–68

    CAS  Google Scholar 

  • Waiss A Jr, Elliger CA, Haddon WF, Benson M (1993) Insect inhibitory steroidal saccharide esters from Physalis peruviana. J Nat Prod 56:1365–1372

    CAS  Google Scholar 

  • Wallin I, Narbonne C, Wahlberg I, Nishida T, Enzell CR (1980) Two new acyclic diterpenoids from Nicotiana sylvestris. Acta Chem Scand B34:391–396

    Google Scholar 

  • Wang LT, Wang AY, Hsieh CW, Chen CY, Sung HY (2005) Vacuolar invertases in sweet potato: Molecular cloning, characterization, and Analysis of gene expression. J Agric Food Chem 53:3672–3678

    PubMed  CAS  Google Scholar 

  • Wang Y, Kays SJ (2002) Sweetpotato volatile chemistry in relation to sweetpotato weevil (Cylas formicarius) behaviour. J Am Soc Horticult Sci 127:656–662

    CAS  Google Scholar 

  • Wanyonyi AW, Chhabra SC, Mkoji G, Eilert U, Njue WM (2002) Bioactive steroidal alkaloid glycosides from Solanum aculeastrum. Phytochemistry 59:79–84

    PubMed  CAS  Google Scholar 

  • Wanyonyi AW, Tarus PK, Chhabra SC (2003) A novel steroidal alkaloid from Solanum aculeastrum. Bull Chem Soc Ethiopia 17:61–66

    CAS  Google Scholar 

  • Ward EWB, Stoessl A (1972) Detoxification of capsidiol, an antifungal compound from peppers. Phytopathology 62:1186–1187

    CAS  Google Scholar 

  • Weeks WW (1999) Relationship between leaf chemistry and organoleptic properties of tobacco smoke. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 304–312

    Google Scholar 

  • Weiler EW, Krüger H, Zenk MH (1980) Radioimmunoassay for the determination of the steroidal alkaloid solasodine and related compounds in living plants and herbarium specimens. Planta Med 39:112–124

    CAS  Google Scholar 

  • Weiss D, van der Luit A, Knegt E, Vermeer E, Mol JNM, Kooter JM (1995) Identification of endogenous gibberellins in petunia flower: induction of anthocyanin biosynthetic gene expression and the antagonistic effect of abscisic acid. Plant Physiol 107:695–702

    PubMed  CAS  Google Scholar 

  • Weissenberg M, Klein M, Meisner J, Ascher KRS (1986) Larval growth inhibition of the spiny bollworm, Earias insulana, by some steroidal secondary plant compounds. Entomol Exp Appl 42:213–217

    CAS  Google Scholar 

  • Weissenberg M, Levy A, Wasserman RH (1993) Solanum glaucophyllum DESF. (duraznillo blanco): In vitro culture and the production of steroidal secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 21, medicinal and aromatic plants IV, Springer, Berlin, Germany, pp 352–370

    Google Scholar 

  • Weissenberg M, Levy A, Svoboda JA, Ishaaya I (1998) The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochemistry 47:203–209

    PubMed  CAS  Google Scholar 

  • Weyerstahl P, Christiansen C, Marschall H (1992) Isolation and synthesis of isohumbertiol, the first naturally occurring sesquiterpene alcohol with a humbertiane skeleton. Liebigs Ann Chem 1325–1328

    Google Scholar 

  • Whitehead IM, Threlfall DR, Ewing DF (1989) 5-epi-Aristolochene is a common precursor of the sesquiterpenoid phytoalexins capsidiol and debneyol. Phytochemistry 28:775–779

    CAS  Google Scholar 

  • Wijayanti L, Kobayashi M, Fujioka S, Yoshizawa K, Sakurai A (1995) Identification and quantification of abscisic acid, indole-3-acetic acid and gibberellins in phloem exudates of Pharbitis nil. Biosci Biotech Biochem 59:1533–1535

    CAS  Google Scholar 

  • Willstätter R, Escher HH (1911) Die Farbstoffe der Tomate. Z Physiol Chem 64:47–61

    Google Scholar 

  • Willuhn G (1966) Untersuchungen zur chemischen Differenzierung bei Solanum dulcamara L. I. Genetische Fixierung der unterschiedlichen Steroidalkaloidführung. Planta Med 14:408–420

    CAS  Google Scholar 

  • Willuhn G (1967) Untersuchungen zur chemischen Differenzierung bei Solanum dulcamara L. II. Der Steroidgehalt in Früchten verschiedener Entwicklungsstadien der Tomatidenol- und Soladulcidin-Sippe. Planta Med 15:58–73

    PubMed  CAS  Google Scholar 

  • Willuhn G, Koestens J (1974) Solanum dulcamara. Triterpenoids and sterols from the petroleum ether extract of the leaves. Planta Med 25:115–137

    CAS  Google Scholar 

  • Willuhn G, Koestens J (1975) Quantitative distribution of sterols and sterol derivatives in organs of Solanum dulcamara. Phytochemistry 14:2055–2058

    CAS  Google Scholar 

  • Willuhn G, Koethe U (1981) Spirostanol-Gehalt und -Variabilität in oberirdischen Organen von Solanum dulcamara L. Dtsch Apoth Ztg 121:235–239

    CAS  Google Scholar 

  • Wilson BJ, Yang DT, Boyd MR (1970) Toxicity of mould-damaged sweet potatoes (Ipomoea batatas). Nature (London) 227:521–522

    PubMed  CAS  Google Scholar 

  • Wilson DD, Son KC, Severson RF, Kays SJ, (1990) Effect of a pentacyclic triterpene from sweet potato storage roots on oviposition by the sweetpotato weevil (Coleoptera: Curculionidae). Environ Entomol 19:1663–1665

    CAS  Google Scholar 

  • Windaus A, Brunken J (1925) Über das Vorkommen von Gitogenin in Digitalis-Blättern. Z Physiol Chem 143:33–47

    CAS  Google Scholar 

  • Wolters B (1964) Beziehungen zwischen Struktur und antibiotischer Wirkung bei einigen Steroidalkaloiden. Arch Pharm 297:748–754

    CAS  Google Scholar 

  • Wolters B (1968) Saponine als pflanzliche Pilzabwehrstoffe. Planta 79:77–83

    CAS  Google Scholar 

  • Yahara S, Morooka M, Ikeda M, Yamasaki M, Nohara T (1986) Two new steroidal glucuronides from Solanum lyratum. Planta Med 52:496–498

    PubMed  CAS  Google Scholar 

  • Yahara S, Izumitani Y, Nohara T (1988) A novel acyclic diterpene glycoside, capsianside A, from Capsicum annuum var. fasciculatum. Tetrahedron Lett 29:1943–1946

    CAS  Google Scholar 

  • Yahara S, Kobayashi N, Izumitani Y, Nohara T (1991) New acyclic diterpene glycosides, capsianosides VI, G and H from the leaves and stems of Capsicum annuum L. Chem Pharm Bull 39:3258–3260

    CAS  Google Scholar 

  • Yahara S, Ura T, Sakamoto C, Nohara T (1994) Steroidal glycosides from Capsicum annuum. Phytochemistry 37:831–835

    PubMed  CAS  Google Scholar 

  • Yahara S, Yamashita T, Nozawa N (nee Fujimura), Nohara T (1996a) Steroidal glycosides from Solanum torvum. Phytochemistry 43:1069–1074

    CAS  Google Scholar 

  • Yahara S, Nakamura T, Someya Y, Matsumoto T, Yamashita T, Nohara T (1996b) Steroidal glycosides, indiosides A – E, from Solanum indicum. Phytochemistry 43:1319–1323

    CAS  Google Scholar 

  • Yahara S, Uda N, Nohara T (1996c) Lycoperosides A – C, three stereoisomeric 23-acetoxyspirosolan-3β-ol-β-lycotetraosides from Lycopersicon esculentum. Phytochemistry 42:169–172

    CAS  Google Scholar 

  • Yahara S, Uda N, Yoshio E, Yae E (2004) Steroidal alkaloid glycosides from tomato (Lycopersicon esculentum). J Nat Prod 67:500–502

    PubMed  CAS  Google Scholar 

  • Yamashita T, Matsumoto T, Yahara S, Yoshida N, Nohara T (1991) Structures of two new steroidal glycosides, soladulcosides A and B from Solanum dulcamara. Chem Pharm Bull 39:1626–1628

    PubMed  CAS  Google Scholar 

  • Yang DTC, Wilson BJ, Harris TM (1971) The structure of ipomeamaranol: A new toxic furanosesquiterpene from moldy sweet potatoes. Phytochemistry 10:1653–1654

    CAS  Google Scholar 

  • Yarden A, Lavie D (1962) Constituents of Withania somnifera. I. Functional groups of withaferin. J Chem Soc 2925–2927

    Google Scholar 

  • Ye WC, Wang H, Zhao SX, Che CT (2001) Steroidal glycoside and glycoalkaloid from Solanum lyratum. Biochem Syst Ecol 29:421–423

    PubMed  CAS  Google Scholar 

  • Yokose T, Katamoto K, Park S, Matsuura H, Yoshihara T (2004) Anti-fungal sesquiterpenoid from the root exudate of Solanum abutiloides. Biosci Biotechnol Agrochem 68:2640–2642

    CAS  Google Scholar 

  • Yokota T, Takahashi N, Murofushi N, Tamura S (1969a) Structures of new gibberellin glucosides in immature seeds of Pharbitis nil. Tetrahedron Lett 2081–2084

    Google Scholar 

  • Yokota T, Takahashi N, Murofushi N, Tamura S (1969b) Isolation of gibberellin A26 and A27 and their glucosides from immature seeds of Pharbitis nil. Planta 87:180–184

    CAS  Google Scholar 

  • Yokota T, Murofushi N, Takahashi N (1970) Structure of new gibberellin glucoside in immature seeds of Pharbitis nil. Tetrahedron Lett 1489–1491

    Google Scholar 

  • Yokota T, Murofushi N, Takahashi N, Tamura S (1971a) Gibberellins in immature seeds of Pharbitis nil. II. Isolation and structures of novel gibberellins, gibberellins A26 and A27. Agric Biol Chem 35:573–582

    CAS  Google Scholar 

  • Yokota T, Murofushi N, Takahashi N, Tamura S (1971b) Gibberellins in immature seeds of Pharbitis nil. III. Isolation and structures of gibberellin glucosides. Agric Biol Chem 35:583–595

    CAS  Google Scholar 

  • Yokota T, Murofushi N, Takahashi N, Katsumi M (1971c) Gibberellins in immature seeds of Pharbitis nil. IV. Biological activities of gibberellins and their glucosides in Pharbitis nil. Phytochemistry 10:2943–2949

    CAS  Google Scholar 

  • Yokota T, Sato T, Takeuchi Y, Nomura T, Uno K, Watanabe T, Takatsuto S (2001) Roots and shoots of tomato produce 6-deoxo-28-cathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone. Phytochemistry 58:233–238

    PubMed  CAS  Google Scholar 

  • Yoshimitsu H, Nishida M, Nohara T (2000) Cholestane glycosides from Solanum abutiloides. III. Chem Pharm Bull 48:556–558

    PubMed  CAS  Google Scholar 

  • Yoshimitsu H, Nishida M, Yoshida M, Nohara T (2002) Four new 26-aminocholestane-type glycosides from Solanum abutiloides. Chem Pharm Bull 50:284–286

    PubMed  CAS  Google Scholar 

  • Yoshimitsu H, Nishida M, Nohara T (2003) Steroidal glycosides from the fruits of Solanum abutiloides. Phytochemistry 64:1361–1366

    PubMed  CAS  Google Scholar 

  • Yoshizaki M, Matsushita S, Fujiwara Y, Ikeda T, Ono M, Nohara T (2005) Tomato new sapogenols, isoesculeogenin A and esculeogenin B. Chem Pharm Bull 53:839–840

    PubMed  CAS  Google Scholar 

  • Zacharius RM, Osman SF (1977) Glycoalkaloids in tissue culture of Solanum species. Dehydrocommersonine from cultured roots of Solanum chacoense. Plant Sci Lett 10:283–287

    CAS  Google Scholar 

  • Zamilpa A, Tortoriello J, Navarro V, Delgado C, Alvarez L (2002) Five new steroidal saponins from Solanum chrysotrichum leaves and their antimycotic activity. J Nat Prod 65:1815–1819

    PubMed  CAS  Google Scholar 

  • Zechmeister L, Cholnoky LV (1927) Über Paprika-Farbstoffe. Liebigs Ann 454:54–71

    CAS  Google Scholar 

  • Zechmeister L, Cholnoky LV (1930) Zum Stand sauerstoffhaltiger Carotenoide in Pflanzen. Vorläufige Mitteilung. Z Physiol Chem 189:159–161

    CAS  Google Scholar 

  • Zechmeister L, Cholnoky LV (1936) Lycoxanthin und Lycophyll, zwei natürliche Derivate des Lycopins. Ber 69B:422–429

    CAS  Google Scholar 

  • Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765

    PubMed  CAS  Google Scholar 

  • Zhou X, He X, Wang G, Gao H, Zhou G, Ye W, Yao X (2006) Steroidal saponins from Solanum nigrum. J Nat Prod 69:1158–1163

    PubMed  CAS  Google Scholar 

  • Zhu XH, Takagi M, Ikeda T, Midzuki K, Nohara T (2001a) Withanolide-type steroids from Solanum cilistum. Phytochemistry 56:741–745

    PubMed  CAS  Google Scholar 

  • Zhu XH, Ando J, Takagi M, Ikeda T, Nohara T (2001b) Six new withanolide-type steroids from the leaves of Solanum cilistum. Chem Pharm Bull 49:161–164

    PubMed  CAS  Google Scholar 

  • Zhu XH, Ando J, Takagi M, Ikeda T, Yoshimitsu A, Nohara T (2001c) Four novel withanolide-type steroids from the leaves of Solanum cilistum. Chem Pharm Bull 49:1440–1443

    PubMed  CAS  Google Scholar 

  • Zhu XH, Tsumagari H, Honbu T, Ikeda T, Ono M, Nohara T (2001d) Peculiar steroidal saponins with opened E-ring from Solanum genera plants. Tetrahedron Lett 42: 8043–8046

    CAS  Google Scholar 

  • Zwenger C, Kind A (1859) [Solanidin] Liebigs Ann Chem 109:244; fide Czapek (1925)

    Google Scholar 

  • Zwenger C, Kind A (1861) [Solanidin] Liebigs Ann Chem 118:129; fide Czapek (1925)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Terpenoids (Isoprenoids). In: Solanaceae and Convolvulaceae: Secondary Metabolites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74541-9_7

Download citation

Publish with us

Policies and ethics