Skip to main content

MR Angiography

  • Chapter
Clinical MR Imaging

Abstract

Magnetic resonance angiography (MRA) is a noninvasive method that provides images similar to those obtained by X-ray digital subtraction angiography (DSA). Blood motion causes two phenomena that change longitudinal and transverse spin magnetization, both of which can be exploited to generate angiographic images. First, time of flight (TOF) effects arise from the movement of longitudinal magnetization during a relatively long period. Second, a flow phenomenon occurs when transverse magnetization moves in the direction of a magnetic field gradient. These effects can be exploited to generate “time of flight” and “phase contrast” angiographic images, respectively, without the use of contrast medium (CM), and their use in clinical practice reflects the state-of-the-art technology available at the time (see also Chap. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Anderson CM, Edelman RR, Turski PA (1993) Clinical MRA. Raven, New York

    Google Scholar 

  • Arlart IP, Bongartz GM, Marchal G (2001) MRA. Springer, Berlin

    Google Scholar 

  • Fraser DGW, Moody AR, Morgan PS, Martel AL, Davidson I (2002) Diagnosis of lower-limb deep venous thrombosis: a prospective blinded study of magnetic resonance direct thrombus imaging. Ann Intern Med 136:89–98

    PubMed  Google Scholar 

  • Graves MJ (1997) MRA. Br J Radiol 70:6–28

    CAS  Google Scholar 

  • Hashemi RH, Bradley WG Jr (1997) MRI: the basics. Williams and Wilkins, Baltimore

    Google Scholar 

  • Hendrick RE, Russ PD, Simon JH (1993) MRI: principles and artifacts. In: Lufkin RB (ed) The Raven MRI teaching file. Raven, New York

    Google Scholar 

  • Huston J et al (2001) Carotid artery: elliptic centric contrast-enhanced MR angiography compared with conventional angiography. Radiology 218:138

    PubMed  Google Scholar 

  • Ho KY, Leiner T, de Haan MW, Kessels AG, Kitslaar PJ, van Engelshoven JM (1998) Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. Radiology 206:683–692

    CAS  PubMed  Google Scholar 

  • Lee HM et al (1998) Distal lower extremity arteries: evaluation with two-dimensional MR digital subtraction angiography. Radiology 207:505

    CAS  PubMed  Google Scholar 

  • Ley S, Kreitner KF, Fink C, Heussel CP, Borst MM, Kauczor HU (2004) Assessment of pulmonary hypertension by CT and MR imaging. Eur Radiol 14(3):359–368.

    Article  PubMed  Google Scholar 

  • Meaney JFM, Prince MR, Nostrant TT, Stanley JC (1997a) Gadolinium-enhanced MR angiography of visceral arteries in patients with suspected chronic mesenteric ischemia. J Magn Reson Imaging 7:171–176

    Article  CAS  PubMed  Google Scholar 

  • Meaney JFM, Weg JG, Chenevert TL, Stafford-Johnson D, Hamilton BH, Prince MR (1997b) Diagnosis of pulmonary embolism with MRA. N Engl J Med 336:1422–1427

    Article  CAS  PubMed  Google Scholar 

  • Meaney FM, Ridgway JP, Chakraverty S, Robertson I, Kessel D, Radjenovic A, Kouwenhoven M, Kasner A, Smith MA (1999) Stepping-table gadolinium-enhanced digital ­substraction MR angiography of the Aorta and lower extremity arteries: preliminary experience. Radiology 211: 59–67

    CAS  PubMed  Google Scholar 

  • Moody AR, Pollock JG, O’Connor AR, Bagnall M (1998) Lower-limb deep venous thrombosis direct MR imaging of the thrombus. Radiology 209:349–355

    CAS  PubMed  Google Scholar 

  • Nael K, Ruehm SG, Michaely HJ, Saleh R, Lee M, Laub G, Finn JP (2007) Multistation whole-body high-spatial-resolution MR angiography using a 32-channel MR system. Am J Roentgenol 188(2):529–539

    Article  Google Scholar 

  • Nelemans PJ, Leiner T, de Vet HCW, van Engelshoven JMA (2000) Peripheral arterial disease: meta-analysis of the diagnostic performence of MR Angiography. Radiology 217:105–114

    CAS  PubMed  Google Scholar 

  • Oudkerk M, Edelman RR (1997) High-power gradient MR-imaging. Advances in MRI II. Blackwell Science, Oxford

    Google Scholar 

  • Oudkerk M, van Beek EJ, Wielopolski P, van Ooijen PM, Brouwers-Kuyper EM, Bongaerts AH, Berghout A (2002) Comparison of contrast-enhanced magnetic resonance angiography and conventional pulmonary angiography for the diagnosis of pulmonary embolism: a prospective study. Lancet 359(9318):1643–1647

    Article  PubMed  Google Scholar 

  • Owen RS, Carpenter JP, Baum RA et al (1992) Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med 326:157–1581

    Google Scholar 

  • Prince MR (1998) Contrast-enhanced MR angiography: theory and optimisation. MRI Clin North Am 6:257

    CAS  Google Scholar 

  • Prince MR, Grist TM, Debatin JF (1997a) 3D contrast MR angiography. Springer, Berlin

    Google Scholar 

  • Prince MR et al (1997b) Hemodynamically significant atherosclerotic renal artery stenosis: MR angiographic features. Radiology 205:128

    CAS  PubMed  Google Scholar 

  • Reimer P, Boos M (1999) Phase-contrast MR angiography of peripheral arteries: technique and clinical application. Eur Radiol 9:122

    Article  CAS  PubMed  Google Scholar 

  • Rofsky NM, Johnson G, Adelman MA, Rosen RJ, Krinsky GA, Weinreb JC (1997) Peripheral vascular disease evaluated with reduced-dose gadolinium-enhanced MR angiography. Radiology 205:163–169

    CAS  PubMed  Google Scholar 

  • Ruehm SG, Goyen M, Barkhausen J, Kroger K, Bosk S, Ladd ME, Debatin JF (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357(9262): 1086–1091

    Article  CAS  PubMed  Google Scholar 

  • Wallner B (1993) MR angiography. Thieme, Stuttgart

    Google Scholar 

  • Weiger M, Pruessmann KP, Kassner A, Rodite G, Reid A, Boesiger P (2000) Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12:671–677

    Article  CAS  PubMed  Google Scholar 

  • Wentz KU, Frohlich JM, von Weymarn C, Patak MA, Jenelten R, Zollikofer CL (2003) High-resolution magnetic resonance angiography of hands with timed arterial compression (tac-MRA). Lancet 361(9351):49–50

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. M. Meaney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meaney, J.F.M., Sheehan, J., Boos, M. (2010). MR Angiography. In: Reimer, P., Parizel, P.M., Meaney, J.F.M., Stichnoth, F.A. (eds) Clinical MR Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74504-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74504-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74501-3

  • Online ISBN: 978-3-540-74504-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics