Skip to main content

Phenomena Induced by Electron Irradiation

  • Chapter
  • 2573 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Handbook of Thin Film Technology”, edited by Leon I. Maissel and Reinhard Glang, McGraw-Hill Book Company, 1970.

    Google Scholar 

ESD/PSD

  1. Marie-Hélène Achard, R. Calder, and A. Mathewson, “The effect of bakeout temperature on the electron and ion induced gas desorption coefficients of some technological materials”, Vacuum 29 (2), pp. 53–65 (1979).

    Article  Google Scholar 

  2. J. Gómez-Goñi and A. G. Mathewson, “Temperature dependence of the electron induced gas desorption yields on stainless steel, copper, and aluminum”, J. Vac. Sci. Technol. A 15 (6), pp. 3093–3103 (1997).

    Article  ADS  Google Scholar 

  3. S. Ueda, M. Matsumoto, T. Kobari, T. Ikeguchi, M. Kobayashi, and Y. Hori, “Photodesorption from stainless steel, aluminum alloy and oxygen free copper test chambers”, Vacuum 41 (7–9), pp. 1928–1930 (1990).

    Article  Google Scholar 

  4. G. Y. Hsiung, K. Y. Young, Y. J. Hsu, and J. R. Chen, “Study of the exposure-dose-dependent photon-stimulated-desorption phenomena”, J. Vac. Sci. Technol. A 19 (4), pp. 1657–1661 (2001).

    Article  ADS  Google Scholar 

  5. J. R. Chen, K. Y. Yang, J. Y. Yang, and G. Y. Hsiung, “Photon-stimulated desorption from an aluminum surface after water vapor exposure”, J. Vac. Sci. Technol. A 20 (3), pp. 857–860 (2002).

    Article  ADS  Google Scholar 

  6. D. Korzec, J. Rapp, D. Theirich, and J. Engemann, “Cleaning of metal parts in oxygen radio frequency plasma: Process study”, J. Vac. Sci. Technol. A 12 (2), pp. 369–378 (1994).

    Article  ADS  Google Scholar 

Polymerization

  1. A. E. Ennos, “The origin of specimen contamination in the electron microscope”, Brit. J. Appl. Phys. 4 April, pp. 101–106 (1953).

    Article  ADS  Google Scholar 

  2. R. W. Christy, “Formation of thin polymer films by electron bombardment”, J. Appl. Phys. 31 (9), pp. 1680–1683 (1960).

    Article  ADS  Google Scholar 

  3. K. H. Müller, “Elektronen-Mikroschreiber mit geschwindigkeitsgesteuerter Strahlführung. I”, Optik 33 (3), pp. 296–311 (1971) (in German).

    Google Scholar 

  4. W. A. Knox, “Contamination formed around a very narrow electron beam”, Ultramicroscopy 1, pp. 175–180 (1976).

    Article  Google Scholar 

  5. L. Reimer and M. Wächter, “Contribution to the contamination problem in transmission electron microscopy”, Ultramicroscopy 3, pp. 169–174 (1978).

    Article  Google Scholar 

  6. J. T. Fourie, “Contamination phenomena in cryopumped TEM and ultrahigh vacuum field-emission STEM systems”, Scanning Electron Microscopy/1976/I, pp. 53–60.

    Google Scholar 

  7. J. T. Fourie, “The elimination of surface-originating contamination in electron microscopes”, Optik 52 (5), pp. 421–426 (1978/79).

    Google Scholar 

  8. J. T. Fourie, “A theory of surface-originating contamination and a method for its elimination”, Scanning Electron Microscopy/1979/II, pp. 87–102.

    Google Scholar 

  9. J. T. Fourie, “Electric effects in contamination and electron beam etching”, Scanning Electron Microscopy/1981/I, pp. 127–134.

    Google Scholar 

  10. J. S. Wall, “Contamination in the STEM at ultrahigh vacuum”, Scanning Electron Microscopy/1980/I, pp. 99–106.

    Google Scholar 

  11. N. Yoshimura, H. Hirano, and T. Etoh, “Mechanism of contamination build-up induced by fine electron probe irradiation", Vacuum 33 (7), pp. 391–395 (1983).

    Article  Google Scholar 

  12. A. E. Ennos, “The sources of electron-induced contamination in kinetic vacuum systems”, Brit. J. Appl. Phys. 5 (1), pp. 27–31 (1954).

    Article  ADS  Google Scholar 

  13. N. Yoshimura and H. Oikawa, “Observation of polymerized films induced by irradiation of electron beams”, Shinku(J. Vac. Soc. Japan) 13 (5), pp. 171–177 (1970) (in Japanese).

    Google Scholar 

  14. B. K. Ambrose, L. Holland, and L. Laurenson, “Reduction of polymer growth in electron microscopes by use of a fluorocarbon oxide pump fluid”, J. Microscopy 96, Pt 3, pp. 389–391 (1972).

    Google Scholar 

  15. L. Holland, L. Laurenson, R. E. Hurley, and K. Williams, “The behaviour of perfluoropolyether and other vacuum fluids under ion and electron bombardment”, Nuclear Instruments and Methods III, pp. 555–560 (1973).

    Google Scholar 

  16. B. Bauer und R. Speidel, “Herabsetzung der Kontaminationsrate im STEM bei einem Druck von 10-5 Torr”, Optik 48 (2), pp. 237–246 (1977) (in German).

    Google Scholar 

  17. D. E. Miller, “SEM vacuum techniques and contamination management”, Scanning Electron Microscopy/1978/I, pp. 513–528.

    Google Scholar 

  18. U. R. Bance, I. W. Drummond, D. Finbow, E. H. Harden, and P. Kenway, “Hydrocarbon contamination in vacuum dependent scientific instruments”, Vacuum 28 (10/11), pp. 489–496 (1978).

    Article  ADS  Google Scholar 

Darkening

  1. C. Le Gressus, D. Massignon, A. Mogami, and H. Okuzumi, “Secondary electron emission dependence on electron beam density dose and surface interactions from AES and ELS in an ultrahigh vacuum SEM”, Scanning Electron Microscopy/1979/I, pp. 161–172.

    Google Scholar 

Etching

  1. H. G. Heide, “The prevention of contamination without beam damage to the specimen,” Fifth International Congress for Electron Microscopy, A-4 (1962).

    Google Scholar 

  2. “Scientific Foundations of Vacuum Technique”(second edition) by Saul Dushman: edited by J. M. Lafferty. John Wiley & Sons, Inc., New York, London, Sydney.

    Google Scholar 

Other Articles

  1. M. Q. Ding and E. M. Williams, “Electron stimulated desorption of gases at technological surfaces of aluminium”, Vacuum 39 (5), pp. 463–469 (1989).

    Article  Google Scholar 

  2. A. G. Mathewson, “Vacuum problems in particle accelerators due to interaction of synchrotron radiation, electrons and ions with surfaces”, Vacuum 44 (5–7), pp. 479–483 (1993).

    Article  Google Scholar 

  3. T. Ohi and O. Konno, “Outgassing characteristics and surface analysis of pure alumimum plates under electron beam irradiation”, J. Vac. Sci. Technol. A 12(6), pp. 3186–3191 (1994).

    Article  ADS  Google Scholar 

  4. N. Ota, K. Kanazawa, M. Kobayashi, and H. Ishimaru, “Outgassing from aluminum surface layer induced by synchrotron radiation”, J. Vac. Sci. Technol. A 14(4), pp. 2641–2644 (1996).

    Article  ADS  Google Scholar 

  5. C. L. Foerster, C. Lanni, C. Perkins, M. Calderon, and W. Bartetta, “Photon stimulated desorption measurement of extruded copper and of welded copper beam chambers for the PEP-II asymmetric B factory”, J. Vac. Sci. Technol. A 13(3), pp. 581–584 (1995).

    Article  ADS  Google Scholar 

  6. C. L. Foerster, C. Lanni, J. R. Noonan, and R. A. Rosenberg, “Photon stimulated desorption measurement of an extruded aluminum beam chamber for the advanced photon source”, J. Vac. Sci. Technol. A 14(3), pp. 1273–1276 (1996).

    Article  ADS  Google Scholar 

  7. C. Herbeaux, P. Marin, V. Baglin, and O. Gröbner, “Photon stimulated desorption of an unbaked stainless steel chamber by 3.75 keV critical energy photons”, J. Vac. Sci. Technol. A 17(2), pp. 635–643 (1999).

    Article  ADS  Google Scholar 

  8. N. Ota, M. Saitoh, K. Kanazawa, T. Momose, and H. Ishimaru, “Reduction of photodesorption yield by oxygen discharge cleaning”, J. Vac. Sci. Technol. A 12 (3), pp. 826–830 (1994).

    Article  ADS  Google Scholar 

  9. Minxu Li and H. F. Dylla, “Reduction of outgassing rate by glow discharge cleaning”, J. Vac. Sci. Technol. A 13 (3), pp. 571–575 (1995).

    Article  ADS  Google Scholar 

  10. T. Momose, Y. Maeda, K. Asano, and H. Ishimaru, “Surface analysis of carbon on ozone treated metals”, J. Vac. Sci. Technol. A 13 (3), pp. 515–519 (1995).

    Article  ADS  Google Scholar 

  11. C. L. Foerster, H. Halama, and C. Lanni, “Photon-stimulated desorption yields from stainless steel and copper-plated beam tubes with various pretreatments”, J. Vac. Sci. Technol. A 8 (3), pp. 2856–2859 (1990).

    Article  ADS  Google Scholar 

  12. M. Saitoh, K. Kanazawa, T. Momose, H. Ishimaru, N. Ota, and J. Uramoto, “Oxygen discharge cleaning method for aluminum storage ring vacuum chambers”, J. Vac. Sci. Technol. A 11 (5), pp. 2518–2524 (1993).

    Article  ADS  Google Scholar 

  13. D. Edwards, Jr., “Desorption of neutral molecules from Al(6010) by electron and ion bombardment”, J. Vac. Sci. Technol. 15 (4), pp. 1586–1596 (1978).

    Article  ADS  Google Scholar 

  14. A. G. Mathewson, E. Alge, O. Gröbner, R. Souchet, and P. Strubin, “Comparison of the synchrotron radiation induced gas desorption in aluminum vacuum chambers after chemical and argon glow discharge cleaning”, J. Vac. Sci. Technol. A 5(4), pp. 2512–2515 (1987).

    Article  ADS  Google Scholar 

  15. B. R. Strohmeier, “The effects of O2 plasma treatments on the surface composition and wettability of cold-rolled aluminum foil”, J. Vac. Sci. Technol. A 7(6), pp. 3238–3245 (1989).

    Article  ADS  Google Scholar 

  16. T. Kobari, M. Matumoto, N. Hirano, M. Katane, M. Matsuzaki, Y. Hori, M. Kobayashi, and M. Nagai, “Photodesorption from a copper chamber with a broached inner surface”, J. Vac. Sci. Technol. A 13 (3), pp. 585–589 (1995).

    Article  ADS  Google Scholar 

  17. R. M. Lambert and C. M. Comrie, “A convenient electrical discharge method for eliminating hydrocarbon contamination from stainless steel UHV systems”, J. Vac. Sci. Technol. 11(2), pp. 530–531 (1974).

    Article  ADS  Google Scholar 

  18. R. P. Govier and G. M. McCracken, “Gas discharge cleaning of vacuum surfaces”, J. Vac. Sci. Technol. 7 (5), pp. 552–556 (1970).

    Article  ADS  Google Scholar 

  19. A. W. Jones, E. Jones, and E. M. Williams, “Investigation by techniques of electron stimulated desorption of the merits of glow discharge cleaning of the surfaces of vacuum chambers at the CERN intersecting storage rings”, Vacuum 23 (7), pp. 227–230 (1973).

    Article  Google Scholar 

  20. D. Blechschmidt, “In situ conditionig for proton storage ring vacuum systems”, J. Vac. Sci. Technol. 15 (3), pp. 1175–1181 (1978).

    Article  ADS  Google Scholar 

  21. H. F. Dylla, K. Bol, S. A. Cohen, R. J. Hawryluk, E. B. Meservey, and S. M. Rossnagel, “Observations of changes in residual gas and surface composition with discharge cleaning in PLT”, J. Vac. Sci. Technol. 16 (2), pp. 752–757 (1979).

    Article  ADS  Google Scholar 

  22. H. F. Dylla, S. A. Cohen, S. M. Rossnagel, G. M. McCracken, and Ph. Staib, “Glow discharge conditioning of the PDX vacuum vessel”, J. Vac. Sci. Technol. 17 (1), pp. 286–290 (1980).

    Article  ADS  Google Scholar 

  23. F. Waelbroeck, J. Winter, and P. Wienhold, “Cleaning and conditioning of the walls of plasma devices by glow discharges in hydrogen”, J. Vac. Sci. Technol. A 2 (4), pp. 1521–1536 (1984).

    Article  ADS  Google Scholar 

  24. H. F. Dylla, “Glow discharge techniques for conditioning high-vacuum systems”, J. Vac. Sci. Technol. A 6 (3), pp. 1276–1287 (1988).

    Article  ADS  Google Scholar 

  25. N. R. Dean, E. W. Hoyt, M. T. Palrang, and B. G. Walker, “Glow discharge processing versus bakeout for aluminum storage ring vacuum chambers”, J. Vac. Sci. Technol. 15 (2), pp. 758–760 (1978).

    Article  ADS  Google Scholar 

  26. M. Suemitsu, H. Shimoyamada, N. Matsuzaki, N. Miyamoto, and J. Ishibe, “Photoemission studies and outgassing-rate measurements on aluminum-alloy surfaces lathed with various alcohols”, J. Vac. Sci. Technol. A 10(1), pp. 188–192 (1992).

    Article  ADS  Google Scholar 

  27. T. Kobari and H. J. Halama, “Photon stimulated desorption from a vacuum chamber at the National Synchrotron Light Source”, J. Vac. Sci. Technol. A 5(4), pp. 2355–2358 (1987).

    Article  ADS  Google Scholar 

  28. T. E. Madey, Al. L. Johnson, and S. A. Joyce, “Electron and photon stimulated desorption: benefits and difficulties”, Vacuum 38 (8–10), pp. 579–583 (1988).

    Article  Google Scholar 

  29. J. R. Chen, G. Y. Hsiung, Y. C. Liu, W. H. Lee, and C. C. Nee, “Secondary ion mass spectroscopy analysis for aluminum surfaces treated by glow discharge cleaning”, J. Vac. Sci. Technol. A 13(3), pp. 562–570 (1995).

    Article  ADS  Google Scholar 

  30. R. Calder, O. Gröbner, A. G. Mathewson, V. V. Anashin, A. Dranichnikov, and O. B. Malyshev, “Synchrotron radiation induced gas desorption from a Prototype Large Hadron Collider beam screen at cryogenic temperatures”, J. Vac. Sci. Technol. A 14(4), pp. 2618–2623 (1996).

    Article  ADS  Google Scholar 

Polymerization

  1. H. C. Poehlmann, R. R. Manning, and R. W. Jackman, “Contamination threats to critical surfaces from handling and storage practices”, J. Vac. Sci. Technol. 9(1), pp. 457–461 (1972).

    Article  ADS  Google Scholar 

  2. H. W. Conru and P. C. Laberge, “Oil contamination with the SEM operated in the spot scanning mode”, J. Phys. E: Scientific Instruments, 8, pp. 136–138 (1975).

    Article  ADS  Google Scholar 

  3. B. Bauer und R. Speidel, “Herabsetzung der Kontaminationsrate im STEM bei einem Druck von 10-5 Torr”, Optik 48 (2), pp. 237–246 (1977).

    Google Scholar 

  4. R. W. Springer and D. S. Catlett, “Rate and pressure dependence of contaminants in vacuum-deposited aluminum films”, J. Vac. Sci. Technol. 15(2), pp. 210–214 (1978).

    Article  ADS  Google Scholar 

  5. T. Tomita, Y. Harada, H. Watanabe, and T. Etoh, “Reduction of contamination in analytical electron microscopy”, Shinku (J. Vac. Soc. Japan) 22 (4), pp. 158–164 (1979) (in Japanese).

    Google Scholar 

  6. K. Yada, “Specimen contamination”, Electron Microscope 16 (1), pp. 2–10 (1981) (in Japanese).

    Google Scholar 

  7. A. Kumao, H. Hashimoto, and K. Shiraishi, “Studies on specimen contamination by transmission electron microscopy”, J. Electron Microsc. 30 (3), pp. 161–170 (1981).

    Google Scholar 

  8. Y. Harada, T. Tomita, T. Watabe, H. Watanabe, and T. Etoh, “Reduction of contamination in analytical electron microscopy”, Scanning Electron Microscopy/1979/II, pp. 103–110.

    Google Scholar 

Etching

  • J. Kirz, “Specimen damage considerations in biological microprobe analysis”, Scanning Electron Microscopy/1980/II, pp. 239–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshimura, N. (2008). Phenomena Induced by Electron Irradiation. In: Vacuum Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74433-7_5

Download citation

Publish with us

Policies and ethics