Skip to main content

Modelling the Thermal Operation in a Catalytic Converter of an Automobile's Exhaust

  • Conference paper

Catalytic converter in an automobile's exhaust system is made up of a finely divided platinum—iridium catalyst (i.e.forming a porous matrix)and provides a platform for exothermic chemical reaction where unburned hydrocarbons completely combust.In this paper, the steady-state solutions of a strongly exother-mic reaction of a viscous combustible fluid (fuel)in a catalytic converter-modelled as a cylindrical pipe filled with a saturated porous medium under Arrhenius kinetics, neglecting reactant consumption, are presented.The Brinkman flow model is employed.Having known the velocity distribution, the nonlinear energy equation is solved using a perturbation technique together with a special type of Hermite—Padé approximants and the important properties of the temperature field including bifurcations and thermal criticality are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Hadhrami, A. K., Elliott, L., and Ingham, D. B., 2003, A new model for vis-cous dissipation in porous media across a range of permeability values, Transport in Porous Media 53, 117-122.

    Article  MathSciNet  Google Scholar 

  2. Brinkman, H. C., 1947, On the permeability of media consisting of closely packed porous particles, Appl. Sci. Res. A1, 81-86.

    Google Scholar 

  3. Frank Kamenetskii, D. A., 1969, Diffusion and Heat Transfer in Chemical kinetics. Plenum Press, New York.

    Google Scholar 

  4. Guttamann, A. J., 1989, Asymptotic analysis of power-series expansions, Phase Transitions and Critical Phenomena, C. Domb and J. K. Lebowitz, eds. Academic Press, New York, pp. 1-234.

    Google Scholar 

  5. Hunter, D. L. and Baker, G. A., 1979, Methods of series analysis III: Integral approximant methods, Phys. Rev. B 19, 3808-3821.

    Article  Google Scholar 

  6. Makinde, O. D., 1999, Extending the utility of perturbation series in problems of laminar flow in a porous pipe and a diverging channel, J. Austral. Math. Soc. Ser. B 41, 118-128.

    Article  MATH  MathSciNet  Google Scholar 

  7. Makinde, O. D., 2004, Exothermic explosions in a slab: a case study of series summation technique, Inter. Comm. Heat & Mass Transfer. 31, 1227-1231.

    Article  Google Scholar 

  8. Makinde, O. D., 2005, Strong exothermic explosions in a cylindrical pipe: A case study of series summation technique, Mech. Res. Comm. Vol. 32, 191-195.

    Article  MATH  Google Scholar 

  9. Makinde, O. D., 2006, Thermal ignition in a reactive viscous flow through a channel filled with a porous medium, ASME - J. Heat Transfer, 128, 601-604.

    Article  Google Scholar 

  10. Makinde, O. D., 2007, Solving microwave heating model in a slab using HermitePade approximation technique, App. Therm. Eng., 27, 599-603.

    Article  Google Scholar 

  11. Tourigny, Y. and Drazin, P. G., 2000, The asymptotic behaviour of algebraic approximants, Proc. Roy. Soc. London A456, 1117-1137.

    Article  MATH  MathSciNet  Google Scholar 

  12. Vainberg, M. M. and Trenogin V. A., 1974, Theory of branching of solutions of nonlinear equations, Noordoff, Leyden.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makinde, O.D. (2008). Modelling the Thermal Operation in a Catalytic Converter of an Automobile's Exhaust. In: Konaté, D. (eds) Mathematical Modeling, Simulation, Visualization and e-Learning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74339-2_4

Download citation

Publish with us

Policies and ethics