Skip to main content

Bioinformatics-Guided Identification and Experimental Characterization of Novel RNA Methyltransferas

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 15))

Naturally occurring RNAs contain numerous chemically altered nucleosides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process. To date, a total of 96 structurally distinguishable modified nucleosides originating from different types of RNAs from many diverse organisms of the three major phylogenetic domains of life have been reported (Rozenski et al. 1999); http://medstat.med.utah.edu/RNAmods; and references therein). The pattern of modifications (type and location) depends on the RNA molecule considered, as well as, on the organism or the organelle they originate from.However, the largest number of modified nucleosides with the greatest structural diversity (a total of 81) is found in transfer RNAs, especially in tRNAs from higher organisms (Sprinzl et al. 1998; http://www.uni-bayreuth.de/departments/biochemie/trna). Other types of RNA (snRNA, snoRNA, rRNA,mRNA) also contain modified nucleosides (see http://rna.wustl.edu/snoRNAdb), however, their occurrence and particularly their diversity are lower than in tRNAs (see, for example,Limbach et al. 1995;Motorin and Grosjean 1998).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agris PF (1996) The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol 53:79-129

    PubMed  Google Scholar 

  • Ahn HJ, Kim HW, Yoon HJ, Lee BI, Suh SW, Yang JK (2003) Crystal structure of tRNA(m'G37)methyltransferase: insights into tRNA recognition. EMBO J 22:2593-2603

    PubMed  Google Scholar 

  • Alexandrov A, Martzen MR, Phizicky EM (2002) Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8:1253-1266

    PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410

    PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402

    PubMed  Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2001) TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. FEMS Microbiol Lett 197:215-221

    PubMed  Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2002a) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427-1464

    PubMed  Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2002b) SPOUT: a class of methyltransferases that includes SpoU and TrmD RNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. J Mol Microbiol Biotechnol 4:71-75

    PubMed  Google Scholar 

  • Anderson J, Phan L, Cuesta R, Carlson BA, Pak M, Asano K, Bjork GR, Tamame M, Hinnebusch AG (1998) The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev 12:3650-3662

    PubMed  Google Scholar 

  • Anderson J, Phan L, Hinnebusch AG (2000) The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:5173-5178

    PubMed  Google Scholar 

  • Aravind L, Koonin EV (1999) Novel predicted RNA-binding domains associated with the translation machinery. J Mol Evol 48:291-302

    PubMed  Google Scholar 

  • Aravind L, Koonin EV (2001) THUMP -a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases. Trends Biochem Sci 26: 215-217.

    PubMed  Google Scholar 

  • Auffinger P, Westhof E (1998) Location and distribution of modified nucleosides in tRNA. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 569-576

    Google Scholar 

  • Auffinger P, Westhof E (2001) An extended structural signature for the tRNA anticodon loop. RNA 7:334-341

    PubMed  Google Scholar 

  • Bjork GR (1995) Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. Prog Nucleic Acid Res Mol Biol 50:263-338

    PubMed  Google Scholar 

  • Bugl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U (2000) RNA methylation under heat shock control. Mol Cell 6:349-360

    PubMed  Google Scholar 

  • Bujnicki JM (1999) Comparison of protein structures reveals monophyletic origin of the AdoMet-dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N4-cytosine and N6-adenine DNA methylation. In Silico Biol 1:1-8 (http://www.bioinfo.de/isb/1999-01/0016/)

  • Bujnicki JM (2000) Phylogenomic analysis of 16S rRNA:(guanine-N2) methyltransferases suggests new family members and reveals highly conserved motifs and a domain structure similar to other nucleic acid amino-methyltransferases. FASEB J 14:2365-2368

    PubMed  Google Scholar 

  • Bujnicki JM (2001a) In silico analysis of the tRNA:m1A58 methyltransferase family: homology-based fold prediction and identification of new members from Eubacteria and Archaea. FEBS Lett 507:123-127

    PubMed  Google Scholar 

  • Bujnicki JM (2001b) Understanding the evolution of restriction-modification systems: clues from sequence and structure comparisons. Acta Biochim Pol 48:1-33

    Google Scholar 

  • Bujnicki JM, Feder M, Radlinska M, Rychlewski L (2001) mRNA:guanine-N7 cap methyl-transferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships. BMC Bioinformatics 2:2

    Google Scholar 

  • Bujnicki JM, Blumenthal RM, Rychlewski L (2002a) Sequence analysis and structure prediction of 23S rRNA:m1G methyltransferases reveals a conserved core augmented with a putative Zn-binding domain in the N-terminus and family-specific elaborations in the C-terminus. J Mol Microbiol Biotechnol 4:93-99

    PubMed  Google Scholar 

  • Bujnicki JM, Feder M, Radlinska M, Blumenthal RM (2002b) Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m6A methyltransferase. J Mol Evol 55:431-444

    PubMed  Google Scholar 

  • Bujnicki JM, Leach RA, Debski J, Rychlewski L (2002c) Bioinformatic analyses of the tRNA:(guanine 26, N2,N2)-dimethyltransferase (Trm1) family. J Mol Microbiol Biotechnol 4:405-415

    PubMed  Google Scholar 

  • Bujnicki JM, Rychlewski L (2000) Prediction of a novel RNA 2'-O-ribose methyltransferase subfamily encoded by the Escherichia coli YgdE open reading frame and its orthologs. Acta Microbiol Pol 49:253-260

    PubMed  Google Scholar 

  • Bujnicki JM, Rychlewski L (2001) Reassignment of specificities of two cap methyltransferase domains in the reovirus l2 protein. Genome Biol 2:38

    Google Scholar 

  • Bujnicki JM, Rychlewski L (2002a) In silico identification, structure prediction and phylogenetic analysis of the 2 ¢-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses. Protein Eng 15:101-108

    PubMed  Google Scholar 

  • Bujnicki JM, Rychlewski L (2002b) RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited -bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure. BMC Bioinformatics 3:10

    PubMed  Google Scholar 

  • Caldas T, Binet E, Bouloc P, Costa A, Desgres J, Richarme G (2000) The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23 S ribosomal RNA methyltransferase. J Biol Chem 275:16414-16419

    PubMed  Google Scholar 

  • Calvo O, Cuesta R, Anderson J, Gutierrez N, Garcia-Barrio MT, Hinnebusch AG, Tamame M (1999) Gcd14p, a repressor of GCN4 translation, cooperates with Gcd10p and Lhp1p in the maturation of initiator methionyl-tRNA in Saccharomyces cerevisiae. Mol Cell Biol 19:4167-4181

    PubMed  Google Scholar 

  • Cavaille J, Chetouani F, Bachellerie JP (1999) The yeast Saccharomyces cerevisiae YDL112w ORF encodes the putative 2¢-O-ribose methyltransferase catalyzing the formation of Gm18 in tRNAs. RNA 5:66-81

    PubMed  Google Scholar 

  • Cermakian N, Cedergren R (1998) Modified nucleosides always were: an evolutionary model. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 535-542

    Google Scholar 

  • Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA (2002) Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res 30:4509-4518

    PubMed  Google Scholar 

  • Clouet d'Orval B, Bortolin ML, Gaspin C, Bachellerie JP (2001) Box C/D RNA guides for the ribose methylation of archaeal tRNAs.The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res 29:4518-4529

    PubMed  Google Scholar 

  • Davis DR (1998) Properties of modified nucleosides, In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 85-102

    Google Scholar 

  • Dixon M, Fauman EB, Ludwig ML (1999) The black sheep of the family: AdoMet-dependen t methyltransferases that do not fit the consensus structural fold. . In: Cheng X, Blumenthal RM (eds) S-Adenosylmethionine-dependent methyltransferases: structures and functions. World Scientific Inc, Singapore, pp 39-54

    Google Scholar 

  • Drennan CL, Huang S, Drummond JT, Matthews RG, Lidwig ML (1994) How a protein binds B12: A 3.0 A X-ray structure of B12-binding domains of methionine synthase. Science 266:1669-1674

    PubMed  Google Scholar 

  • Droogmans L, Roovers M, Bujnicki JM, Tricot C, Hartsch T, Stalon V, Grosjean H (2003) Cloning and characterization of tRNA (m1 A58) methyltransferase (TrmI) from Thermus thermophilus HB27, a protein required for cell growth at extreme temperatures. Nucleic Acids Res 31:2148-2156

    PubMed  Google Scholar 

  • Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2 ¢-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757-2768

    PubMed  Google Scholar 

  • Eisen JA (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8:163-167

    PubMed  Google Scholar 

  • Fauman EB, Blumenthal RM, Cheng X. (1999) Structure and evolution of AdoMet-dependent MTases. In: Cheng X, Blumenthal RM (eds) S-Adenosylmethionine-dependent methyltransferases: structures and functions, World Scientific Inc, Singapore, pp 1-38

    Google Scholar 

  • Feder M, Pas J, Wyrwicz LS, Bujnicki JM (2003) Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2 ¢-O-methyltransferases. Gene 302:129-138

    PubMed  Google Scholar 

  • Fleissner E, Borek E (1962) A new enzyme of RNA synthesis: RNA methylase. Proc Natl Acad Sci USA. 48:1199-1203

    PubMed  Google Scholar 

  • Galperin MY, Koonin EV (2000) Who's your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18:609-613

    PubMed  Google Scholar 

  • Galperin MY, Walker DR, Koonin EV (1998) Analogous enzymes: independent inventions in enzyme evolution. Genome Res 8:779-790

    PubMed  Google Scholar 

  • Garcia GA, Goodenough-Lashua DM (1998) Modifying and editing enzyme mechanisms. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp135-168

    Google Scholar 

  • Grosjean H, Auxilien S, Constantinesco F, Simon C, Corda Y, Becker HF, Foiret D, Morin A, Jin YX, Fournier M, Fourrey JL (1996) Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie 78:488-501

    PubMed  Google Scholar 

  • Grosjean H, Motorin Y, Morin A (1998) RNA-modifying and RNA-editing enzymes: methods for their identification. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp.21-46

    Google Scholar 

  • Gu XR, Gustafsson C, Ku J, Yu M, Santi DV (1999) Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli. Biochemistry 38:4053-4057

    PubMed  Google Scholar 

  • Gupta A, Kumar PH, Dineshkumar TK, Varshney U, Subramanya HS (2001) Crystal structure of Rv2118 c: An AdoMet-dependent methyltransferase from Mycobacterium tuberculosis H37Rv. J Mol Biol 312:381-391

    PubMed  Google Scholar 

  • Gustafsson C, Reid R, Greene PJ, Santi DV (1996) Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res 24:3756-3762

    PubMed  Google Scholar 

  • Heurgue-Hamard V, Champ S, Engstrom A, Ehrenberg M, Buckingham RH (2002) The hemK gene in Escherichia coli encodes the N5-glutamine methyltransferase that modifies peptide release factors. EMBO J 21:769-778

    PubMed  Google Scholar 

  • Hodel AE, Gershon PD, Quiocho FA (1998) Structural basis for sequence-nonspecific recognition of 5 ¢-capped mRNA by a cap-modifying enzyme. Mol Cell 1:443-447

    PubMed  Google Scholar 

  • Hong B, Brockenbrough JS, Wu P, Aris JP (1997) Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast. Mol Cell Biol 17:378-388

    PubMed  Google Scholar 

  • Hopper AK, Phizicky EM (2003) tRNA transfers to the limelight. Genes Dev 17:162-180

    PubMed  Google Scholar 

  • Huynen M, Dandekar T, Bork P (1998) Differential genome analysis applied to the species-specific features of Helicobacter pylori. FEBS Lett 426:1-5

    PubMed  Google Scholar 

  • Jackman JE, Montange RK, Malik HS, Phizicky EM (2003) Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. RNA 9:574-585

    PubMed  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8-11

    PubMed  Google Scholar 

  • Jeltsch A, Pingoud A (1996) Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems. J Mol Evol 42:91-96

    PubMed  Google Scholar 

  • Johansson MJ, Bystrom AS (2002) Dual function of the tRNA(m5U54)methyltransferase in tRNA maturation. RNA 8:324-335

    PubMed  Google Scholar 

  • Koonin EV (1994) Prediction of an rRNA methyltransferase domain in human tumorspecific nucleolar protein P120. Nucleic Acids Res 22:2476-2478

    PubMed  Google Scholar 

  • Koonin EV, Mushegian AR, Bork P (1996) Non-orthologous gene displacement. Trends Genet 12:334-336

    PubMed  Google Scholar 

  • Koonin EV, Rudd KE (1993) SpoU protein of Escherichia coli belongs to a new family of putative rRNA methylases. Nucleic Acids Res 21:5519

    PubMed  Google Scholar 

  • Kressler D, Rojo M, Linder P, Cruz J (1999) Spb1p is a putative methyltransferase required for 60S ribosomal subunit biogenesis in Saccharomyces cerevisiae. Nucleic Acids Res 27:4598-4608

    PubMed  Google Scholar 

  • Lafontaine DL, Preiss T, Tollervey D (1998) Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Mol Cell Biol 18:2360-2370

    PubMed  Google Scholar 

  • Li W, Jaroszewski L, Godzik A (2002) Sequence clustering strategies improve remote homology recognitions while reducing search times. Protein Eng 15:643-649

    PubMed  Google Scholar 

  • Lim K, Zhang H, Tempczyk A, Krajewski W, Bonander N, Toedt J, Howard A, Eisenstein E, Herzberg O (2003) Structure of the YibK methyltransferase from Haemophilus influenzae (HI0766): a cofactor bound at a site formed by a knot. Proteins 51:56-67

    PubMed  Google Scholar 

  • Limbach PA, Crain PF, McCloskey JA (1994) Summary: the modified nucleosides of RNA. Nucleic Acids Res 22:2183-2196

    PubMed  Google Scholar 

  • Limbach PA, Crain PF, McCloskey JA (1995) Characterization of oligonucleotides and nucleic acids by mass spectrometry. Curr Opin Biotechnol 6:96-102

    PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1999) A computational screen for methylation guide snoRNAs in yeast. Science 283:1168-1171

    PubMed  Google Scholar 

  • Marcotte EM (2000) Computational genetics: finding protein function by nonhomology methods. Curr Opin Struct Biol 10:359-365

    PubMed  Google Scholar 

  • Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285:751-753

    PubMed  Google Scholar 

  • Marmorstein R (2003) Structure of SET domain proteins: a new twist on histone methylation. Trends Biochem. Sci. 28:59-62

    Google Scholar 

  • Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, Grayhack EJ, Phizicky EM (1999) A biochemical genomics approach for identifying genes by the activity of their products. Science 286:1153-1155

    PubMed  Google Scholar 

  • Michel G, Sauve V, Larocque R, Li Y, Matte A, Cygler M (2002) The structure of the RlmB 23S rRNA methyltransferase reveals a new methyltransferase fold with a unique knot. Structure 10:1303-1315

    PubMed  Google Scholar 

  • Mosbacher TG, Bechthold A, Schulz GE (2003) Crystal structure of the avilamycin resistance-conferring methyltransferase AviRa from Streptomyces viridochromogenes. J Mol Biol 329:147-157

    PubMed  Google Scholar 

  • Motorin Y, Grosjean H (1998) Chemical structures and classification of posttranscriptionally modified nucleosides in RNA. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 543-549

    Google Scholar 

  • Motorin Y, Grosjean H (1999). Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme. RNA 5:1105-1118

    PubMed  Google Scholar 

  • Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonne R (2002) Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol Cell 9:891-901

    PubMed  Google Scholar 

  • Nakahigashi K, Kubo N, Narita SS, Shimaoka T, Goto S, Oshima T, Mori H, Maeda M, Wada C, Inokuchi H (2002) HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc Natl Acad Sci USA 99:1473-1478

    PubMed  Google Scholar 

  • Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274: 814-824

    PubMed  Google Scholar 

  • Nordlund ME, Johansson JO, Pawel-Rammingen U, Bystrom AS (2000) Identification of the TRM2 gene encoding the tRNA(m5U54) methyltransferase of Saccharomyces cerevisiae. RNA 6:844-860

    PubMed  Google Scholar 

  • Nureki O, Shirouzu M, Hashimoto K, Ishitani R, Terada T, Tamakoshi M, Oshima T, Chijimatsu M, Takio K, Vassylyev DG, Shibata T, Inoue Y, Kuramitsu S, Yokoyama S (2002) An enzyme with a deep trefoil knot for the active-site architecture. Acta Crystallogr D Biol Crystallogr 58:1129-1137

    PubMed  Google Scholar 

  • Omer AD, Ziesche S, Ebhardt H, Dennis PP (2002) In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. Proc Natl Acad Sci USA 99:5289-5294

    PubMed  Google Scholar 

  • Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96:2896-2901

    PubMed  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444-2448

    PubMed  Google Scholar 

  • Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96:4285-4288

    PubMed  Google Scholar 

  • Persson BC, Gustafsson C, Berg DE, Bjork GR (1992) The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli. Proc Natl Acad Sci USA 89:3995-3998

    PubMed  Google Scholar 

  • Persson BC, Jager G, Gustafsson C (1997) The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA (Gm18) 2 ¢-O-methyltransferase activity. Nucleic Acids Res 25:4093-4097

    PubMed  Google Scholar 

  • Phizicky EM, Martzen MR, McCraith SM, Spinelli SL, Xing F, Shull NP, Van Slyke C, Montagne RK, Torres FM, Fields S, Grayhack EJ (2002) Biochemical genomics approach to map activities to genes. Methods Enzymol 350:546-559

    PubMed  Google Scholar 

  • Pintard L, Bujnicki JM, Lapeyre B, Bonnerot C (2002a) MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. EMBO J 21:1139-1147

    PubMed  Google Scholar 

  • Pintard L, Kressler D, Lapeyre B (2000) Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-L-methionine in vitro. Mol Cell Biol 20:1370-1381

    PubMed  Google Scholar 

  • Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapeyre B (2002b) Trm7p catalyses the formation of two 2 ¢-O-methylriboses in yeast tRNA anticodon loop. EMBO J 21:1811-1820

    PubMed  Google Scholar 

  • Reid R, Greene P, Santi DV (1999) Exposition of a family of RNA m5C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res 27:3138-3145

    PubMed  Google Scholar 

  • Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 A resolution. Nature 404:960-967

    PubMed  Google Scholar 

  • Rogozin IB, Makarova KS, Murvai J, Czabarka E, Wolf YI, Tatusov RL, Szekely LA, Koonin EV (2002) Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Res 30:2212-2223

    PubMed  Google Scholar 

  • Romeo JM, Delk AS, Rabinowitz JC (1974) The occurrence of a transmethylation reaction not involving S-adenosylmethionine in the formation of ribothymidine in Bacillus subtilis transfer-RNA. Biochem Biophys Res Commun 61:1256-1261

    PubMed  Google Scholar 

  • Rost B (2002) Enzyme function less conserved than anticipated. J Mol Biol 318:595-608

    PubMed  Google Scholar 

  • Rozenski J, Crain PF, McCloskey JA (1999) The RNA Modification Database: 1999 update. Nucleic Acids Res 27:196-197

    PubMed  Google Scholar 

  • Schaffer AA, Wolf YI, Ponting CP, Koonin EV, Aravind L, Altschul SF (1999) IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed positionspecific score matrices. Bioinformatics 15:1000-1011

    PubMed  Google Scholar 

  • Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C (1999) The 2.2 A structure of the rRNA methyltransferase ErmC¢ and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J Mol Biol 289:277-291

    PubMed  Google Scholar 

  • Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329-335

    PubMed  Google Scholar 

  • Schubert HL, Wilson KS, Raux E, Woodcock SC, Warren MJ (1998) The X-ray structure of a cobalamin biosynthetic enzyme, cobaltprecorrin-4 methyltransferase. Nat Struct Biol 5:585-592

    PubMed  Google Scholar 

  • Schubot FD, Chen CJ, Rose JP, Dailey TA, Dailey HA, Wang BC (2001) Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription. Protein Sci 10: 1980-1988

    PubMed  Google Scholar 

  • Seidel-Rogol B.L., McCulloch V, Shadel GS (2003) Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet 33:23-24

    PubMed  Google Scholar 

  • Smith JE, Cooperman BS, Mitchell P (1992) Methylation sites in Escherichia coli ribosomal RNA: localization and identification of four new sites of methylation in 23S rRNA. Biochemistry 31:10825-10834

    PubMed  Google Scholar 

  • Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26:148-153

    PubMed  Google Scholar 

  • Staker BL, Korber P, Bardwell JC, Saper MA (2000) Structure of Hsp15 reveals a novel RNA-binding motif. EMBO J 19:749-757

    PubMed  Google Scholar 

  • Terns MP, Terns RM (2002) Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Exp 10:17-39

    Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2002) Sequence and structural differences between enzyme and nonenzyme homologs. Structure (Camb) 10:1435-1451

    Google Scholar 

  • Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443-457

    PubMed  Google Scholar 

  • Tscherne JS, Nurse K, Popienick P, Michel H, Sochacki M, Ofengand J (1999). Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli. Biochemistry 38:1884-1892

    PubMed  Google Scholar 

  • Vestergaard B, Van LB, Andersen GR, Nyborg J, Buckingham RH, Kjeldgaard M (2001) Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol Cell 8:1375-1382

    PubMed  Google Scholar 

  • Wang H, Boisvert D, Kim KK, Kim R, Kim SH (2000) Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J 19:317-323

    PubMed  Google Scholar 

  • Winkler ME (1998) Genetics and regulation of base modification in the tRNA and rRNA of Prokaryotes and Eukaryotes, In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 441-470

    Google Scholar 

  • Wu P, Brockenbrough JS, Paddy MR, Aris JP (1998) NCL1, a novel gene for a non-essential nuclear protein in Saccharomyces cerevisiae. Gene 220:109-117

    PubMed  Google Scholar 

  • Xing F, Martzen MR, Phizicky EM (2002) A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA 8: 370-381

    PubMed  Google Scholar 

  • Yu L, Petros AM, Schnuchel A, Zhong P, Severin JM, Walter K, Holzman TF, Fesik SW (1997) Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance. Nat Struct Biol 4:483-489

    PubMed  Google Scholar 

  • Zarembinski T, Kim Y, Peterson K, Christendat D, Dharamsi A, Arrowsmith CH, Edwards AM, Joachimiak A (2002) Deep trefoil knot implicated in RNA binding found in an archaebacterial protein. Proteins 50:177-183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bujnicki, J.M., Droogmans, L., Grosjean, H., Purushothaman, S.K., Lapeyre, B. (2008). Bioinformatics-Guided Identification and Experimental Characterization of Novel RNA Methyltransferas. In: Bujnicki, J.M. (eds) Practical Bioinformatics. Nucleic Acids and Molecular Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74268-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74268-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74267-8

  • Online ISBN: 978-3-540-74268-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics