Skip to main content

Active Transposons in Rice

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 62))

The first ‘transposon’ — that of the ‘controlling element’ of maize — was discovered by Mclintock more than half a century ago. This element was detected as a factor controlling the mutable character of kernel pigmentation. In higher plants, many mutable traits have bee found, especially for genes involved in pigmentation and endosperm quality. Recent molecular analyses have revealed that many of these mutable traits are controlled by transposons (Fedoroff et al. 1983, 1984; Bonas et al. 1984; Brown et al. 1989; Inagaki et al. 1994).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asakura N, Nakamura C, Ishii T, Kasai Y, Yoshida S (2002) A transcriptionally active maize MuDR-like transposable element in rice and its relatives. Mol Genet Genomics 268:321–330

    Article  PubMed  CAS  Google Scholar 

  • Bonas U, Sommer H, Harrison BJ, Saedler H (1984) The transposable element Tam1 of Antirrhinum majus is 17 kb long. Mol Gen Genet 194:138–143

    Article  CAS  Google Scholar 

  • Brown JJ, Mattes MG, O’Reilly C, Shepherd NS (1989) Molecular characterization of rDt a maize transposon of the “Dotted” controlling element system. Mol Gen Genet 215:239–244

    Article  PubMed  CAS  Google Scholar 

  • Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Bureau TE, Wessler SR (1994a) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916

    Article  PubMed  CAS  Google Scholar 

  • Bureau TE, Wessler SR (1994b) Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 91:1411–1415

    Article  PubMed  CAS  Google Scholar 

  • Bureau TE, Ronald PC, Wessler SR (1996) A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci USA 93:8524–8529

    Article  PubMed  CAS  Google Scholar 

  • Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR (2000) The MITE family Heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci USA 97:10083–10089

    Article  PubMed  CAS  Google Scholar 

  • Casa AM, Nagel A, Wessler SR (2004) MITE display. Methods Mol Biol 260:175–188

    PubMed  CAS  Google Scholar 

  • Fedoroff N, Wessler SR, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff N, Furtek DB, Nelson OE (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci USA 81:3825–3829

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nature Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  • Han C-G, Frank MJ, Ohtsubo H, Ohtsubo E (2000) New transposable elements identified as insertions in rice transposon Tnr1. Genes Genet Syst 75:69–77

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Mu J, Zhang H-J, Tao Y-Z, Han B (2006) Differentiation of a miniature inverted transposable element (MITE) system in Asian rice cultivars and its inference for a diphyletic origin of two subspecies of Asian cultivated rice. J Integrative Plant Biol 48:260–267

    Article  CAS  Google Scholar 

  • Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, Iida S (1994) Isolation of a Suppressor-Mutator/Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Plant Cell 6:375–383

    Article  PubMed  CAS  Google Scholar 

  • IRGSP (International Rice Genome Sequencing Project) (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jiang N, Bao Z, Zhang X, et al. (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  PubMed  CAS  Google Scholar 

  • Kazazian Jr HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:163–167

    Article  Google Scholar 

  • Komori T, Nitta N (2003) High frequency of sequence polymorphism in rice MITEs and application to efficient development of PCR-based markers. Breed Sci 53:85–92

    Article  CAS  Google Scholar 

  • Kwon SJ, Park KC, Kim JH, Lee JK, Kim NS (2005) Rim 2/Hipa CACTA transposon display; a new genetic marker technique in Oryza species. BMC Genet 6:15

    Article  PubMed  Google Scholar 

  • Lin X, Long L, Shan X, Zhang S, Shen S, Liu B (2006) In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization. J Exp Bot 57:2313–2323

    Article  PubMed  CAS  Google Scholar 

  • Maekawa M, Rikiishi K, Matsuura T, Noda K (1999) A marker line H-126, carries a genetic factor making chlorophyl mutation variagated. Rice Genet Newslett 16:61–62

    Google Scholar 

  • Mochizuki K, Umeda M, Ohtsubo H, Ohtsubo E (1992) Characterization of a plant SINE p-SINE1, in rice genomes. Jpn J Genet 67:155–166

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki K, Ohtsubo H, Hirano H, Sano Y, Ohtsubo E (1993) Classification and relationships of rice strains with AA genome by identification of transposable elements at nine loci. Jpn J Genet 68:205–217

    Article  PubMed  CAS  Google Scholar 

  • Motohashi R, Ohtsubo E, Ohtsubo H (1996) Identification of Tnr3, a Suppressor-Mutator/ Enhancer-like transposable element from rice. Mol Gen Genet 250:148–152

    PubMed  CAS  Google Scholar 

  • Naito K, Cho E, Yang G, et al. (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA 103:17620–17625

    Article  PubMed  CAS  Google Scholar 

  • Nakazaki T, Ikehashi H (1998) Genomic sequence and polymorphisms of a rice chitinase gene, Cht4. Breed Sci 48:371–376

    CAS  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, et al. (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172

    Article  PubMed  CAS  Google Scholar 

  • Peterson PA (1988) The mobile element system in maize. In: Nelson OE (ed) Plant transposable element. Plenum Press, New York, pp 43–68

    Google Scholar 

  • Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H (1990) A single treatment of rice seedling with 5-azacytidine induced heritable dwarfism and undermethylation of genomic DNA. Mol Gen Genet 220:441–447

    Article  CAS  Google Scholar 

  • Shan X, Liu Z, Dong Z, et al. (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Pi LY, Bureau TE, Ronald PC (1998) Identification and characterization of 14 transposon-like elements in the noncoding regions of members of the Xa21 family of disease resistance genes in rice. Mol Gen Genet 258:449–456

    Article  PubMed  CAS  Google Scholar 

  • Tenzen T, Matsuda Y, Ohtsubo H, Ohtsubo E (1994) Transposition of Tnr1 in rice genomes to 5′-PuTAPy-3′ sites, duplicating the TA sequence. Mol Gen Genet 245:441–448

    Article  PubMed  CAS  Google Scholar 

  • Teraishi M, Okumoto Y, Hirochika H, Horibita A, Yamagata H, Tanisaka T (1995) Identification of a mutable slender glume gene in rice (Oryza sativa L.). Mol Gen Genet 261:487–494

    Google Scholar 

  • Teraishi M, Okumoto Y, Hirochika H, Horibata A, Yamagata H, Tanisaka T (1999) Identification of mutable slender glume gene in rice (Oryza sativa L.). Mol Gen Genet 261:487–494

    Article  PubMed  CAS  Google Scholar 

  • Teraishi M, Hirochika H, Okumoto Y, Horibata A, Yamagata H, Tanisaka T (2001) Identification of YAC clones containing the mutable slender glume locus slg in rice (Oryza sativa L.). Genome 44:1–6

    Article  PubMed  CAS  Google Scholar 

  • Tsugane K, Maekawa M, Takagi K, et al. (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    Article  PubMed  CAS  Google Scholar 

  • Umeda M, Ohtsubo H, Ohtsubo E (1991) Diversification of rice waxy gene by insertion of mobile DNA elements into introns. Jpn J Genet 66:569–586

    Article  PubMed  CAS  Google Scholar 

  • Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 5:814–821

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Dooner HK (2005) Mx-rMx, a new family of interacting transposons in the growing hAT superfamily of maize. Plant Cell 17:375–388

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Hall TC (2003) MDM-1 and MDM-2: two Mutator-derived MITE families in rice. J Mol Evol 56:255–264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakazaki, T., Naito, K., Okumoto, Y., Tanisaka, T. (2008). Active Transposons in Rice. In: Hirano, HY., Sano, Y., Hirai, A., Sasaki, T. (eds) Rice Biology in the Genomics Era. Biotechnology in Agriculture and Forestry, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74250-0_6

Download citation

Publish with us

Policies and ethics