Skip to main content

Chromosome and Genome Evolution in Rice

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 62))

Genomic and species divergences in rice offer a major advantage in genetic and evolutional studies, as well as for practical breeding purposes. The genus Oryza is classified into nine genomes comprising 23 species (two cultivated and 21 wild). Classification of the genome has been made based on the ability of a known tester genome to form paired bivalent chromosomes during meiosis in an F1 hybrid with an accession of unknown genome. Varied levels of partial sterility have been observed in the crosses between a variety of accessions, both across species as well as within a species, suggesting continuous evolution of the genome. The pattern of genome and chromosomal evolution of the genus Oryza and of the family Poaceae has been resolved progressively over the last decades. The observed results, possible relationships and impact on genome and chromosome evolution are reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal RK, Brar DS, Khush GS (1997) Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridization. Mol Gen Genet 254:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Ammiraju JSS, Luo M, Goicoechea JL, et al. (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147.

    Article  PubMed  Google Scholar 

  • Bao W, Zhang W, Yang Q, Zhang Y, Han B, Gu M (2006) Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryza rhizomatis. Mol Gen Genet 275:421–430.

    CAS  Google Scholar 

  • Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J (2001) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757.

    PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T, et al. (2002) Functional centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704.

    Article  PubMed  CAS  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opinion Plant Biol 8:155–162.

    Article  CAS  Google Scholar 

  • Devos KM, Gale, MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15.

    Article  PubMed  CAS  Google Scholar 

  • Fukui K, Shishido R, Kinoshita T (1997) Identification of the rice D-genome chromosomes by genomic in situ hybridization. Theor Appl Genet 95:1239–1245.

    Article  CAS  Google Scholar 

  • Guo X, Xu G, Zhang Y, Wen X, Hu W, Fan L (2006) Incongruent evolution of chromosomal size in rice. Genet Mol Res 30:373–389.

    Google Scholar 

  • Hass-Jacobus B, Futrell-Griggs M, Abernathy B, et al. (2006) Integration of hybridization-based markers (overgoes) into physical maps for comparative and evolutionary explorations in the genus Oryza and in sorghum. BMC Genomics 7:199–214.

    Article  PubMed  Google Scholar 

  • Hu CH (1961) Comparative karyological studies of wild and cultivated species of Oryza. Taiwan Provincial College of Agriculture, Taichung.

    Google Scholar 

  • Ilic K, SanMigiuel PJ, Bennetzen JL (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA 100:12265–12270.

    Article  PubMed  CAS  Google Scholar 

  • Katayama T (1990) Relationships between chromosome numbers and genomic constitutions in genus Oryza. In: Matsuo T, Futsuhara Y, Kikuchi F, Yamaguchi H (eds) Science of the rice plant, vol 3, Genetics, pp 39–48. Food and Agriculture Policy Research Center Press, Tokyo.

    Google Scholar 

  • Khush GS (1990) Report of meetings to discuss chromosome numbering system in rice. Rice Genet Newslett 7:12–15.

    Google Scholar 

  • Khush GS, Singh RJ, Sur SC, Librojo AL (1984) Primary trisomics of rice. Origin, morphology, cytology and use in linkage mapping. Genetics 107:141–163.

    PubMed  Google Scholar 

  • Kurata N (1985) Chromosome analysis of meiosis and mitosis in rice. Rice Genetics I:143–152. International Rice Research Institute, Manila.

    Google Scholar 

  • Kurata N, Fukui K (2003) Chromosome research in genus Oryza. In: Nanda JS, Sharma SD (eds) Monograph on genus Oryza, pp 213–261. Science Publishers, Enfield, USA, Plymouth UK.

    Google Scholar 

  • Kurata N, Omura T (1978) Karyotype analysis in rice. I. A new method for identifying all chromosome pairs. Jpn J Genet 53:251–255.

    Article  Google Scholar 

  • Kurata N, Nonomura K, Harushima Y (2002) Rice genome organization: the centromere and genome interactions. Annals Botany 90:427–435.

    Article  CAS  Google Scholar 

  • Lee H-R, Zhang W, Langdon T, et al. (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798.

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Zhu W, Silva JC, Gu X, Buell CR (2006) Intron gain and loss in segmentally duplicated genes in rice. Genome Biol 7:R41.

    Article  PubMed  Google Scholar 

  • Lu J, Tang H, Huang J, Shi S, Wu C-I (2006) The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet 22:126–131.

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling and divergence in a centromeric region of rice. Proc Natl Acad Sci USA 103:383–388.

    Article  PubMed  CAS  Google Scholar 

  • Miyabayashi T, Nonomura K-I, Kurata N (2007) Genome size determination of twenty wild Oryza species by flow cytometric and chromosome analyses. Breed Sci 57:73–78.

    Article  Google Scholar 

  • Moore G, Aragon-Alcaide L, Roberts M, Reader S, Miller T, Foote T (1997) Are rice chromosomes components of a holocetric chromosome ancestor? Plant Mol Biol 35:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Nandi HK (1936) The chromosome morphology, secondary association and origin of cultivated rice. J Genet 33:315–336.

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908.

    Article  PubMed  CAS  Google Scholar 

  • Piegu B, Guyot R, Picault N, et al. (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269.

    Article  PubMed  CAS  Google Scholar 

  • Sakai K (1935) Study of rice chromosomes. 1. Secondary pairing of meiotic chromosomes. Jpn J Genet 11:145–156 (in Japanese).

    Article  Google Scholar 

  • Sasaki T, Matsumoto T, Antonio BA, Nagamura Y (2005) From mapping to sequencing, post-sequencing and beyond. Plant Cell Physiol 46:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Uozu S, Ikehashi H, Ohmido N, Ohtsubo H, Ohtsubo E, Fukui K (1997) Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol Biol 35:791–799.

    Article  PubMed  CAS  Google Scholar 

  • Wing R, Ammiraju JSS, Luo M, et al. (2005) The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 59:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Wing R, Luo M, Goicoechea JL, et al. (2006a) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147.

    PubMed  Google Scholar 

  • Wing R, Kim HR, Goicoechea JL, et al. (2006b) The Oryza map aligment project: a new resource for comparative genomic studies within Oryza. Proc 4th Int Rice Funct Genomics Symp 11.

    Google Scholar 

  • Wu J, Kurata N, Tanoue H, et al. (1998) Physical mapping of duplicated genomic regions of two chromosome ends in rice. Genetics 150:1595–1603.

    PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, et al. (2005) The genomes of Oryza sativa: a history of duplication. Plos Biol 3:266–281.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurata, N. (2008). Chromosome and Genome Evolution in Rice. In: Hirano, HY., Sano, Y., Hirai, A., Sasaki, T. (eds) Rice Biology in the Genomics Era. Biotechnology in Agriculture and Forestry, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74250-0_18

Download citation

Publish with us

Policies and ethics