Skip to main content

Interactions of Fungi and Radionuclides in Soil

  • Chapter
Microbiology of Extreme Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 13))

Following the development of nuclear weapons and the subsequent evolution of nuclear energy-generating industries, there has been considerable concern regarding the safe storage of radionuclide waste. Widescale release, in the aftermath of nuclear detonations or as the result of malfunction of atomic energy plants and reprocessing facilities, has also been a preoccupation. The International Commission on Radiological Protection recommendations on the ecological aspects of radionuclide release were discussed by Coughtree (1983), in which Heal and Horrill (1983) sum-marized element transfers within terrestrial ecosystems, highlighting the importance of organic soil horizons and their microbial communities as potential accumulators of both nutrient elements and radionuclides. This was a significant step forward from initial discussions of the impact of radionuclide fallout on ecosystems, where the involvement of fungi in regulating radionuclide movement was limited to one sentence in a paragraph describing radionuclide accumulation in organic horizons of forest soils, which may be related to fungal biomass (Osburn 1967). Now, in a more recent model of radiocesium migration in forest ecosystems, Avila and Moberg (1999) place fungal activity in the pivotal point of the diagonal of their interaction matrix, as one of the important biotic regulators of radionuclide movement in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiking H, Tempest DW (1977) Rubidium as a probe for function and transport of potassium in the yeast Candida utilis NCYC-321 grown in chemostat culture. Arch Microbiol 115: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Avery SV (1996) Fate of caesium in the environment: Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems J Environ Radioactiv 30:139–171

    Article  CAS  Google Scholar 

  • Avila R, Johanson KJ, Bergström R (1999) Model of the seasonal variations of fungi ingestion and 137Cs activity concentrations in roe deer. J Environ Radioactiv 46:99–112

    Article  CAS  Google Scholar 

  • Avila R, Moberg L (1999) A systematic approach to the migration of 137Cs in forest ecosystems using interaction matrices. J Environ Radioactiv 45:217–282

    Article  Google Scholar 

  • Baeza A, Guillén FJ, Hernández S (2002) Transfer of 134Cs and 85Sr to Pleurotus eryngii fruiting bodies under laboratory conditions: A compartmental model approach. Bull Environ Contam Toxicol 69:817–828

    Article  PubMed  CAS  Google Scholar 

  • Barnett CL, Beresford NA, Frankland JC, Self PL, Howard BJ, Marriott JVR (2001) Radiocaesium intake in Great Britain as a consequence of the consumption of wild fungi. Mycologist 15:98–104

    Article  Google Scholar 

  • Berreck M, Hasselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of cesium and other cations by plants. Mycorrhiza 10:275–280

    Article  CAS  Google Scholar 

  • Bohac JD, Krivolutskii A, Antonova TB (1989) The role of fungi in the biogenous migration of elements and in the accumulation of radionuclides. Agric Ecosyst Environ 28:31–34

    Article  Google Scholar 

  • Burlakova EB, Michailov VF, Mazurik VK (2001) System of an oxidation-reduction homeostasis at the instability genome induced by radiation. Rad Biol Radioecol 41:489–499

    CAS  Google Scholar 

  • Byrne AR (1988) Radioactivity in fungi in Slovenia, Yugoslavia, following the Chernobyl accident. J Environ Radioactiv 6:177–183

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2000). Radiation hormesis: Its historical foundations as a biological hypothesis. Hum Exper Toxicol 19:41–75

    Article  CAS  Google Scholar 

  • Cawse PA (1983) The accumulation of caesium-137 and plutonium-239 + 240 in soils of Great Britain, and transfer to vegetation. In: Coughtree PJ, Bell JNB, Roberts TM (eds) Ecological Aspects of Radionuclide Release. Blackwell Scientific, Oxford, pp 47–62

    Google Scholar 

  • Clint GM, Dighton J (1992) Uptake and accumulation of radiocaesium by mycorrhizal and non-mycorrhizal heather plants. New Phytol 122:555–561

    Article  Google Scholar 

  • Clint GM, Dighton J, Rees S (1991) Influx of 137Cs into hyphae of basidiomycete fungi. Mycolog Res 95:1047–1051

    Article  CAS  Google Scholar 

  • Connolly JH, Shortle WC, Jellison J (1998) Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Bot 77:179–187

    Article  Google Scholar 

  • Coughtree PJ (ed) (1983) Ecological Aspects of Radionuclide Release. Blackwell Scientific, Oxford

    Google Scholar 

  • Das J (1991) Influence of potassium in the agar medium on the growth pattern of the filamentous fungus Fusarium solani. Appl Environ Microbiol 57:3033

    PubMed  CAS  Google Scholar 

  • de Boulois HD, Delvaux B, Declerck S (2005) Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium. Environ Poll 134:515–524

    Article  CAS  Google Scholar 

  • Denny HJ, Wilkins DA (1987a) Zinc tolerance in Betula spp. I. Effects of external concentration of zinc on growth and uptake. New Phytol 106:517–524

    CAS  Google Scholar 

  • Denny HJ, Wilkins DA (1987b) Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol 106:545–553

    CAS  Google Scholar 

  • Dighton J (2003) Fungi in Ecosystem Processes. Marcel Dekker, New York

    Book  Google Scholar 

  • Dighton J, Clint GM, Poskitt JM (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: A potential pool of Cs immobilization. Mycol Res 95:1052–1056

    Article  CAS  Google Scholar 

  • Dighton J, Horrill AD (1988) Radiocaesium accumulation in the mycorrhizal fungi Lactarius rufus and Inocybe longicystis, in upland Britain. Trans Brit Mycol Soc 91:335–337

    Article  CAS  Google Scholar 

  • Dighton J, Terry GM (1996) Uptake and immobilization of caesium in UK grassland and forest soils by fungi following the Chernobyl accident. In: Frankland JC, Magan N and Gadd GM (eds) Fungi and Environmental Change. Cambridge University Press, Cambridge, pp 184–200

    Google Scholar 

  • Drissner J, Bürmann W, Enslin F, Heider R, Klemt E, Miller R, Schick G, Zibold G (1998) Availability of caesium radionuclides to plants – Classification of soils and role of mycorrhiza J Environ Radioactiv 41:19–32

    Article  CAS  Google Scholar 

  • Durrell LW, Shields LA (1960) Fungi isolated in culture from soils of the Nevada test site. Mycologia 52:636–641

    Article  Google Scholar 

  • Eckl P, Hoffman W, Turk R (1986) Uptake of natural and man-made radionuclides by lichens and mushrooms. Radiat Environ Biophys 25:43–54

    Article  PubMed  CAS  Google Scholar 

  • Elstner EF, Fink R, Holl W, Lengfelder E, Ziegler H (1987) Natural and Chernobyl-caused radioactivity in mushrooms, mosses and soil-samples of defined biotops in SW Bavaria. Oecologia 73: 553–558

    Article  Google Scholar 

  • Entry JA, Rygiewicz PT, Emmingham WH (1993) Accumulation of cesium-137 and strontium-90 in Ponderosa pine and Monterey pine seedlings. J Environ Qual 22:742–746

    CAS  Google Scholar 

  • Entry JA, Rygiewicz PT, Emmingham WH (1994) 90Sr uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi. Environ Poll 86:201–206

    Article  CAS  Google Scholar 

  • Fogel R, Hunt G (1983) Contribution of mycorrhiza and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Can J For Res 13:219–232

    Article  CAS  Google Scholar 

  • Gauslaa Y, Solhaug KA (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 126:462–471

    Article  Google Scholar 

  • Giovani C, Nimis PL, Land P, Padovani R (1990) Investigation of the performance of macromycetes as bioindicators of radioactive contamination. In: Desmet G, Nassimbeni P and Belli M (eds) Transfer of Radionuclides in Natural and Semi-Natural Environments. Elsevier Applied Science, London, pp 485–491

    Google Scholar 

  • Gray SN (1998) Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem Soc Trans 26: 666–670

    PubMed  CAS  Google Scholar 

  • Gray SN, Dighton J, Jennings DH (1996) The physiology of basidiomycete linear organs III. Uptake and translocation of radiocaesium within differentiated mycelia of Armillaria spp. growing in microcosms and in the field. New Phytol 132:471–482

    Article  Google Scholar 

  • Gray SN, Dighton J, Olsson S, Jennings DH (1995) Real-time measurement of uptake and translocation of 137Cs within mycelium of Schizophyllum commune Fr. by autoradiography followed by quantitative image analysis. New Phytol 129:449–465

    Article  CAS  Google Scholar 

  • Grodzinsky DM (1989) Radiobiology of Plants. Nauk. Dumka Press, Kiev

    Google Scholar 

  • Grodzinsky DM, Shelina YuV, Meheev OM, Guscha NI (2005) Radiation hormesis retrospective review and contemporaneity. Prob Nucl Power Plant Safe Chernobyl 3:17–28

    Google Scholar 

  • Guillitte O, Fraiture A, Lambinon J (1990) Soil-fungi radiocaesium transfers in forest ecosystems. In: Desmet G, Nassimbeni P and Belli M (eds) Transfer of Radionuclides in Natural and Semi-Natural Environments. Elsevier Applied Science, London

    Google Scholar 

  • Guillitte O, Gasia MC, Lambinon J, Fraiture A, Colard J, Kirchmann R (1987) La radiocontamination des champignons sauvages en Belgique et au Grand-Duché de Luxembourg après l’accident nucléaire de Tchernobyl. Mem Soc Roy Bot Belg 9: 79–93

    Google Scholar 

  • Guillitte O, Melin J, Wallberg L (1994) Biological pathways of radionuclides originating from the Chernoyl fallout in a boreal forest ecosystem. Sci Total Environ 157:207–215

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K (1978) Accumulation of the radioactive nuclide 137Cs in fruitbodies of basidiomycetes. Health Phys 34:713–715

    PubMed  CAS  Google Scholar 

  • Haselwandter K, Bereck M, Brunner P (1988) Fungi as bioindicators of radiocaesium contamination. Pre- and post Chernobyl activities. Trans Br Mycol Soc 90:171–176

    Article  CAS  Google Scholar 

  • Haselwandter K, Berreck M (1994) Accumulation of radionuclides in fungi. In: Winkelmann G and Winge DR (eds) Metal Ions in Fungi. Marcel Dekker, New York, pp 259–277

    Google Scholar 

  • Heal OW, Horrill AD (1983) Terrestrial ecosystems: An ecological context for radionuclide research. In: Coughtree, PJ (ed.) Ecological Aspects of Radionuclide Release. Blackwell Scientific, Oxford, pp 31–46

    Google Scholar 

  • Huselton CA, Hill HZ (1990) Melanin photosensitizes ultraviolet light (UVC) DNA damage in pigmented cells. Environ Mol Mutagen 16: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Jackson NE, Miller RH, Franklin RE (1973) The influence of vesicular-arbuscular mycorrhizae on uptake of 90Sr from soil by soybeans. Soil Biol Biochem 5:205–212

    Article  CAS  Google Scholar 

  • Jennings DH (1990) The ability of basidiomycete mycelium to move nutrients through the soil ecosystem. In: Harrison AF, Ineson P and Heal OW (eds) Nutrient Cycling in Terrestrial Ecosystems: Field Methods, Applications and Interpretation. Elsevier, Amsterdam, pp 233–245

    Google Scholar 

  • Joner EJ, Roos P, Jansa J, Frossard E, Leyval C, Jakobsen I (2004) No significant contribution of arbuscular mycorrhizal fungi to transfer of radiocesium from soil to plants. Appl Environ. Microbiol 70:6512–6517

    Article  PubMed  CAS  Google Scholar 

  • Kirchner G, Dalliant O (1998) Accumulation of 210Pb, 226Ra and radioactive cesium by fungi. Sci Total Environ 222: 63–70

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud YA-G (2004) Uptake of radionuclides by some fungi. Mycobiology 32:110–114

    CAS  Google Scholar 

  • Malinowska E, Szefer P, Bojanowski R (2006) Radionuclide content in Xercomus badius and other commercial mushrooms from several regions of Poland. Food Chem 97: 19–24

    Article  CAS  Google Scholar 

  • Mietelski JW, Jasinska M, Kubica B, Kozak K, Macharski P (1994) Radioactive contamination of Polish mushrooms. Sci Total Environ 157:217–226

    Article  CAS  Google Scholar 

  • Mironenko NV, Alekhina IA, Zhdanova NN, Bulat SA (2000) Intraspecific variation in gamma-radiation resistance and genomic structure in the filamentous fungus Alternaria alternata: A case study of strains inhabiting Chernobyl Reactor No. 4. Ecotox Environ Safe 45: 177–187

    Article  CAS  Google Scholar 

  • Muramatsu Y, Yoshida S, Sumia M (1991) Concentrations of radiocesium and potassium in basidiomycetes collected in Japan. Sci Total Environ 105:29–39

    Article  PubMed  CAS  Google Scholar 

  • Olsen RA, Joner E, Bakken LR (1990) Soil fungi and the fate of radiocaesium in the soil ecosystem - a discussion of possible mechanisms involved in the radiocaesium accumulation in fungi, and the role of fungi as a Cs-sink in the soil. In: Desmet G, Nassimbeni P and Belli M (eds) Transfer of Radionuclides in Natural and Semi-Natural Environments. Elsevier Applied Science, London, pp 657–663

    Google Scholar 

  • Olsson S (1995) Mycelial density profiles of fungi on heterogenous media and their interpretation in terms of nutrient reallocation patterns. Mycol Res 99:143–153

    Article  Google Scholar 

  • Olsson S, Jennings DH (1991) Evidence for diffusion being the mechanism of translocation in the hyphae of three moulds. Exper Mycol 15:302–309

    Article  CAS  Google Scholar 

  • Oolbekkink GT, Kuyper TW (1989) Radioactive caesium from Chernobyl in fungi. Mycologist 3:3–6

    Article  Google Scholar 

  • Osburn WS (1967) Ecological concentration of nuclear fallout in a Colorado mountain watershed. In: Aberg and Hungate (eds.) Radiological Concentration Process. Pergamon Press, New York, pp 675–709

    Google Scholar 

  • Oughton DH (1989) The environmental chemistry of radiocaesium and other nuclides. PhD Thesis, University of Manchester, UK

    Google Scholar 

  • Pelevina II, Aleschnko AV, Antoschina MM, Gotlib VJ, Kudriashova OV, Semenova LP, Serebryanyi AM (2003) The reaction of cell population to low level of irradiation. Rad. Biol Radioecol 43:161–166

    CAS  Google Scholar 

  • Petin VG, Morozov II, Kabakova NM, Gorshkova TA (2003) Some effects of radiation hormesis for bacterial and yeast cells. Rad Biol Radioecol 43:176–178

    CAS  Google Scholar 

  • Rafferty B, Dawson D, Kliashtorn A (1997) Decomposition in two pine forests: The mobilization of 137Cs and K from forest litter. Soil Biol Biochem 29:1673–1681

    Article  CAS  Google Scholar 

  • Raskin I and Ensley BD (eds) (2000) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. Wiley, New York

    Google Scholar 

  • Rayner ADM (1991) The challenge of the individualistic mycelium. Mycologia 83:48–71

    Article  Google Scholar 

  • Ritz K (1995) Growth responses of some fungi to spatially heterogeneous nutrients. FEMS Microbiol Ecol 16:269–280

    Article  CAS  Google Scholar 

  • Rommelt R, Hiersche L, Schaller G, Wirth E (1990) Influence of soil fungi (Basidiomycetes) on the migration of Cs134 + 137 and SR90 in coniferous forest soils. In: Desmet G, Nassimbeni P and Belli M (eds) Transfer of Radionuclides in Natural and Semi-Natural Environments. Elsevier Applied Science, London, pp 152–160

    Google Scholar 

  • Roséna K, Zhong Weiliang Z, Mårtensson A (2005) Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass. Sci Total Environ 338:283–290

    Article  CAS  Google Scholar 

  • Rühm W, Steiner M, Kammerer L, Hiersche L, Wirth E (1998) Estimating future radiocaesium contamination of fungi on the basis of behavioural patterns derived from past instances of contamination. J Environ Radioactiv 39:129–147

    Article  Google Scholar 

  • Sanchez AL, Parekh NR, Dodd BA, Ineson P (2000) Microbial component of radiocaesium retention in highly organic soils. Soil Biol Biochem 32:2091–2094

    Article  CAS  Google Scholar 

  • Shaw G, Venter A, Avila R, Bergman R, Bulgakov A, Calmon P, Fesenko S, Frissel M, Goor F, Konoplev A, Linkov I, Mamikhin S, Moberg L, Orlov A, Rantavaara A, Spiridonov S, Thiry Y (2005) Radionuclide migration in forest ecosystems - Results of a model validation study J Environ Radioactiv 84:285–296

    Article  CAS  Google Scholar 

  • Singleton I, Tobin JM (1996) Fungal interactions with metals and radionuclides for environmental bioremediation. In: Frankland JC, Magan N and Gadd GM (eds.) Fungi and Environmental Change. Cambridge University Press, Cambridge, pp 282–298

    Google Scholar 

  • Skladany GJ, Metting F (1992) Bioremediation of contaminated soil. Soil Microb Ecol 438–513

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic Press, San Diego

    Google Scholar 

  • Steinera M, Linkovb M, Yoshida S (2002) The role of fungi in the transfer and cycling of radionuclides in forest ecosystems J Environ Radioactiv 58: 217–241

    Article  Google Scholar 

  • Strandberg M, Johansson M (1998) 134Cs in heather seed plants grown with and without mycorrhiza. J Environ Radioactiv 40:175–184

    Article  CAS  Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47:821–824

    PubMed  CAS  Google Scholar 

  • Tugay T, Zhdanova N, Zheltonozhsky V, Sadovnikov L (2006b) Influence of small dozes radiation on antioxidant activity of anamorphic fungal species Aspergillus versicolor and Paecilomyces lilacinus, having radio adaptive properties. Abstract of the 35 th Annual Meeting of the European Radiation Research Society 22–25 August, Kiev 2006, p 84

    Google Scholar 

  • Tugay TI (2006) Features of evince of adaptable reactions at micromycetes, isolated from radioactively polluted territories. Abstract of XII meeting of Ukrainian Botany Society, 15–18 May, Odessa, p 26

    Google Scholar 

  • Tugay TI, Zhdanova NN, Retchits TI, Zheltonozhsky VA, Sadovnikov LV (2003) Influence of low level ionizing irradiation on spread of radiotropism among fungi. Sci Pap Inst Nuc Res 2:72–79

    Google Scholar 

  • Tugay TI, Zhdanova NN, Zheltonozhsky VA, Sadovnikov LV, Dighton J (2006a) The influence of ionizing radiation on spore germination and emergent hyphal growth response reactions of microfungi. Mycologia 98:521–527

    Article  PubMed  Google Scholar 

  • Tugay TI, Zhdanova NN, Zheltonozhsky VA, Sadovnikov LV, Telichko MV (2005) Response reactions of the fungi, isolated from inner locations of “Ukryttya”, which have different levels of radioactivity. Sci Pap Inst Nuc Res 1:128–136

    Google Scholar 

  • Tugay TI, Zheltonozhsky VA, Sadovnikov LV (2004) Response reactions of fungi under exposure of ionizing irradiation. Sci Pap Inst Nuc Res 2:132–138

    Google Scholar 

  • Vember VV, Zhdanova NN, Tugay TI (1999) Irradiation influence on the physiologo-biochemical properties of Cladosporium cladosporioides (Fres.) de Vries strains which differ in radiotropism sign. Microbiologichny Zhurnal 61:25–32

    CAS  Google Scholar 

  • Vogt KA, Grier CC, Edmonds RL, Meier CE (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis (Dougl.) Forbes ecosystems in western Washington. Ecology 63:370–380

    Article  Google Scholar 

  • Watling R, Laessoe T, Whalley AJS, Lepp NW (1993) Radioactive caesium in British mushrooms. Bot J Scotl 46:487–497

    Article  Google Scholar 

  • White C, Gadd GM (1990) Biosorption of radionuclides by fungal biomass. J Chem Tech Biotech 49:331–343

    Article  CAS  Google Scholar 

  • Witkamp M (1968) Accumulation of 137Cs by Trichoderma viride relative to 137Cs in soil organic matter and soil solution. Soil Sci 106:309–311

    Article  Google Scholar 

  • Witkamp M, Barzansky B (1968) Microbial immobilization of 137Cs in forest litter. Oikos 19:392–395

    Article  CAS  Google Scholar 

  • Yoshida S, Muramatsu Y (1994) Accumulation of radiocesium in basidiomycetes collected from Japanese forests. Sci Total Environ 157:197–205

    Article  CAS  Google Scholar 

  • Zhdanova NN, Lashko TN, Redchitz TI, Vasiliveskaya AI, Bosisyuk LG, Sinyavskaya OI, Gavrilyuk VI, Muzalev PN (1991) Interaction of soil micromycetes with ‘hot’ particles in a model system. Microbiologichny Zhurnal 53:9–17

    CAS  Google Scholar 

  • Zhdanova NN, Melezhik AV, Vasilevskaya AI, Pokhodenko VD (1978) Formation and disappearance of photo induced paramagnetic centers in melanin-containing fungi. Herald Acad Sci USSR 4:576–581

    Google Scholar 

  • Zhdanova NN, Redchitz TI, Krendayaskova VG, Lacshko TN, Gavriluk VI, Muzalev PI, Sherbachenko AM (1994) Tropism under the influence of ionizing radiation. Mikologia i Fitopatologiya 28:8–13

    Google Scholar 

  • Zhdanova NN, Tugay T, Dighton J, Zheltonozhsky V, McDermott P (2004) Ionizing radiation attracts fungi. Mycol Res 108:1089–1096

    Article  PubMed  Google Scholar 

  • Zhdanova NN, Vasilevskaya AI, Artyshkova LV, Sadovnikov YuS, Gavrilyuk VI, Dighton J (1995) Changes in the micromycete communities in soil in response to pollution by long-lived radionuclides emitted in the Chernobyl accident. Mycol Res 98:789–795

    Article  Google Scholar 

  • Zhdanova NN, Vasilevskaya AA, Sadnovikov YuS, Artyshkova LA (1990) The dynamics of micromycete complexes contaminated with soil radionuclides. Mikologia i Fitopatologiya 24:504–512

    Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Haselwandter K (2005b) Radionuclides and fungal communities. In: Dighton J, White JF and Oudemans P (eds) The Fungal Community: Its Organization and Role in the Ecosystem. CRC Press, Baton Rouge, pp 759–768

    Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Tugay NI, Karpenko YV (2005a) Fungi lesion of inner locations object shelter. Prob Nuc Power Plants’ Safe Chernobyl, 3:78–86

    Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: Mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426

    Article  Google Scholar 

  • Zvyagintsev DG (1987) Soil and Microorganisms. Moscow State University Press, Moscow

    Google Scholar 

  • Zvyagintsev DG (1999) Structure and Functioning of a Complex Soil Microorganisms/ Structurally Functional Role of Soil in Biosphere. GEOS, Moscow, pp101–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dighton, J., Tugay, T., Zhdanova, N. (2008). Interactions of Fungi and Radionuclides in Soil. In: Dion, P., Nautiyal, C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74231-9_16

Download citation

Publish with us

Policies and ethics