Skip to main content

Bringing Folding Pathways into Strand Pairing Prediction

  • Conference paper
Algorithms in Bioinformatics (WABI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Included in the following conference series:

Abstract

The topology of β-sheets is defined by the pattern of hydrogen-bonded strand pairing. Therefore, predicting hydrogen bonded strand partners is a fundamental step towards predicting β-sheet topology. In this work we report a new strand pairing algorithm. Our algorithm attempts to mimic elements of the folding process. Namely, in addition to ensuring that the predicted hydrogen bonded strand pairs satisfy basic global consistency constraints, it takes into account hypothetical folding pathways. Consistently with this view, introducing hydrogen bonds between a pair of strands changes the probabilities of forming other strand pairs. We demonstrate that this approach provides an improvement over previously proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, R.L., Rose, G.D.: Is protein folding hierarchic? I. II. Folding intermediates and transition states. Trends in Biochemical Sciences 24(2), 77–83 (1999)

    Article  Google Scholar 

  2. Baldwin, R.L., Rose, G.D.: Is protein folding hierarchic? I. Local structure and peptide folding. Trends in Biochemical Sciences 134(3), 26–33 (1999)

    Article  Google Scholar 

  3. Berman, P., Jeong, J.: Consistent sets of secondary structures in proteins, http://www.cse.psu.edu/~jijeong

  4. Bystroff, C., Baker, D.: Prediction of local structure in proteins using a library of sequence-structure motifs. Journal of Molecular Biology 281(3), 565–577 (1998)

    Article  Google Scholar 

  5. Cheng, J., Baldi, P.: Three-stage prediction of protein beta-sheets by neural networks, alignments and graph algorithms. Bioinformatics 21(suppl. 1), 75–84 (2005)

    Article  Google Scholar 

  6. Crippen, G.M.: The tree structural organization of proteins. Journal of Molecular Biology 126, 315–332 (1978)

    Article  Google Scholar 

  7. Hubbard, T.J., Park, J.: Fold recognition and ab initio structure predictions using hidden markov models and β-strand pair potentials. Proteins: Structure, Function, and Genetics 23(3), 398–402 (1995)

    Article  Google Scholar 

  8. Huthinson, E.G., Sessions, R.B., Thornton, J.M., Woolfson, D.N.: Determinants of strand register in antiparallel β-sheets of proteins. Protein Science 7(11), 2287–2300 (1998)

    Google Scholar 

  9. Inbar, Y., Benyamini, H., Nussinov, R., Wolfson, H.J.: Protein structure prediction via combinatorial assembly of sub-structural units. Bioinformatics 19(suppl. 1), 158–168 (2003)

    Article  Google Scholar 

  10. Kingford, C.L., Chazelle, B., Singh, M.: Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 21(7), 1028–1036 (2004)

    Article  Google Scholar 

  11. Klepeis, J.L., Floudas, C.A.: Astro-fold: A combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biophysical Journal 85, 2119–2146 (2003)

    Article  Google Scholar 

  12. Kryshtafovych, A., Venclovas, C., Fidelis, K., Moult, J.: Protein folding: From the levinthal paradox to structure prediction. Journal of Molecular Biology 293(2), 283–293 (1999)

    Article  Google Scholar 

  13. Lesk, A.M., Rose, G.D.: Folding Units in Globular Proteins. PNAS 78(7), 4304–4308 (1981)

    Article  Google Scholar 

  14. Levinthal, C.: Are there pathways for protein folding? Journal de Chimie Physique et de Physico-Chimie Biologique 65, 44 (1968)

    Google Scholar 

  15. Menke, M., King, J., Berger, B., Cowen, L.: Wrap-and-pack: A new paradigm for beta structural motif recognition with application to recognizing beta trefoils. Journal of Computational Biology 12(6), 777–795 (2005)

    Article  Google Scholar 

  16. Moult, J.: A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Current Opinion in Structural Biology 15(3), 285–289 (2005)

    Article  Google Scholar 

  17. Przytycka, T.M., Srinivasan, R., Rose, G.D.: Recursive domains in proteins. Protein Science 11(2), 409–417 (2002)

    Article  Google Scholar 

  18. Richardson, J.S.: beta-Sheet topology and the relatedness of proteins. Nature 268(5620), 495–500 (1977)

    Article  Google Scholar 

  19. Rose, G.D.: Hierarchic organization of domains in globular proteins. Journal of Molecular Biology 134(3), 447–470 (1979)

    Article  Google Scholar 

  20. Ruczinski, I., Kooperberg, C., Bonneau, R., Baker, D.: Distributions of beta sheets in proteins with application to structure prediction. Proteins: Structure, Function, and Genetics 48(1), 85–97 (2002)

    Article  Google Scholar 

  21. Srinivasan, R., Rose, G.D.: LINUS: A hierarchic procedure to predict the fold of a protein. Proteins: Structure, Function, and Genetics 22(2), 81–99 (1995)

    Article  Google Scholar 

  22. Steward, R.E., Thornton, J.M.: Prediction of strand pairing in antiparallel and parallel β-sheets using information theory. Proteins: Structure, Function, and Genetics 48(2), 178–191 (2002)

    Article  Google Scholar 

  23. Woolfson, D.N., Evans, P.A., Hutchinson, E.G., Thornton, J.M.: On the conformation of proteins: The handedness of the connection between parallel β-strands. Journal of Molecular Biology 110, 269–283 (1977)

    Article  Google Scholar 

  24. Xu, J., Li, M., Kim, D., Xu, Y.: Raptor: Optimal protein threading by linear programming. Journal of Bioinformatics and Computational Biology 1(1), 85–117 (2003)

    Article  Google Scholar 

  25. Zhang, C., Kim, S.-H.: The anatomy of protein [beta]-sheet topology. Journal of Molecular Biology 299(4), 1075–1089 (2002)

    Article  MathSciNet  Google Scholar 

  26. Zhu, H., Braun, W.: Sequence specificity, statistical potentials, and three-dimensional structure prediction with self-correcting distance geometry calculations of beta-sheet formation in proteins. Protein Science 8(2), 326–342 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeong, J.K., Berman, P., Przytycka, T.M. (2007). Bringing Folding Pathways into Strand Pairing Prediction. In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics