Skip to main content
  • 1155 Accesses

Abstract

For 40 years now, the focus of nuclear medicine in oncology has been on the diagnosis of metastases of the skeletal system. In the age of ultrasound, CT and endorectal MRI, early urological diagnosis of possible extracapsular extension has gained importance [23, 60, 133, 145a,b]. Desirable competences of imaging diagnostics are reliable staging, lymph node staging (also in connection with sentinel node scintigraphy), recurrence detection and response assessment. It must be clarified in studies whether the total lesion index (TLI) [79] substantially enhances the informative value of FDG-PET, since no reliable information concerning the extracapsular extension status has been available until now. In the FAD (far advanced disease) stages, the TLI probably has no clinical consequences. This is clinically decisive for a verifiable prognosis of therapeutic effectiveness. For decades now, brachytherapy has played a competent role in prolonging disease-free survival in the treatment of prostate carcinoma [90, 105].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.9 References

  1. Albertsen PC, Hanley JA, Fine J et al (2005) Twenty-year outcomes following conservative management of clinically localized prostate cancer. J Am Med Ass (JAMA) 293:2095–2101

    Article  CAS  Google Scholar 

  2. Bander NH, Trabulsi EJ, Kostakoglu L et al (2003) Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 170:1717–1721

    Article  PubMed  CAS  Google Scholar 

  3. Bastian PJ, Waha A, Müller StC, von Rücker A (2004) Epigenetische Veränderungen in der Karzinogenese des Prostatakarzinoms. Dtsch Ärztebl 101:A1981–1985

    Google Scholar 

  4. Baum RP, Hertel A, Baew-Christow T et al (1991) First clinical results with a Tc-99m labeled monoclonal anti-AFP antibody in germ cell and liver tumours (FP-2G3-5). Eur J Nucl Med 18:535

    Google Scholar 

  5. Baum RP, Hertel A, Baew-Christow T, Boeckmann W, Hör G, Goldenberg DM (1991) Initial clinical results with a Tc-99m labeled anti-AFP monoclonal antibody fragment in germ cell and liver tumours (Abstr. 613 ). J Nucl Med 32:1053

    Google Scholar 

  6. Baum RP, Hör G (1996) Renal tumour imaging. In: Pabst HW, Adam WE, Hör G, Kriegel H, Schwaiger M (eds) Handbook of nuclear medicine. Gustav Fischer, Stuttgart, pp 180–190

    Google Scholar 

  7. Beheshdi M, Vali R, Langsteger W (2007) 18F-fluorocholine PET/CT in the assessment of bone metastases in prostate cancer (Letter to the editor) Eur J Nucl Med Mol Imaging 34:1316–17

    Article  Google Scholar 

  8. Belitsky PH, Ghose T, Aquino J, Tai J (1978) Radionuclide imaging of renal cell carcinoma by 131-labeled antitumour antibody. Radiology 126:515

    PubMed  CAS  Google Scholar 

  9. Beyersdorff D, Taupitz M, Winkelmann B et al (2002) Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: Value of MR imaging. Radiology 224:701–706

    Article  PubMed  Google Scholar 

  10. Blumstein NM, Finsterbusch FM, Penner S et al (2005) Prörperative C-11-Cholin-PET/CT der Prostata und histopathologische 3-D-Korrelation. Nuklearmedizin 44:V85

    Google Scholar 

  11. Blumstein NM, Reske SN (2004) PET/CT zur Diagnostik des Prostatakarzinomes. Der Nuklearmediziner 27:304–314

    Article  Google Scholar 

  12. Bottke D, Wiegel Th, Müller M et al (2004) Strahlentherapie nach radikaler Prostatektomie (Vorgehen bei PSAAnstieg oder-Persistenz ohne histologische Sicherung eines Lokalrezidivs). Dtsch Ärztebl 101:A2255–2259

    Google Scholar 

  13. Bourguet P, Group de Travail SOR (2003) Standards, options and recommendations for the use of PET-FDG in cancerology. Results in urologic cancers. Bull Cancer 90:S80–87

    Google Scholar 

  14. Breeuwsma AJ, Pruim J, Jongen MM et al (2005) In vivo uptake of 11C-cholin does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging 32:668–673

    Article  PubMed  Google Scholar 

  15. Breul J, Zimmermann F, Dettmar P, Paul R (2003) Prostatakarzinom/Manual urogenitale Tumoren. Zuckschwerdt, Munich, pp 1–42

    Google Scholar 

  16. Bruwer G, Heyns CF, Allen FJ (1999) Influence of local tumour stage and grade on reliability of serum prostate-specific antigen in predicting skeletal metastases in patients with adenocarcinoma of the prostate. Eur Urol 35:223–227

    Article  PubMed  CAS  Google Scholar 

  17. Burkhard FC, Bader P, Fischer B et al (2000) Who needs lymph node dissection as a staging procedure in prostate cancer? J Urol 163:190

    Google Scholar 

  18. Chae EJ, Kim JK, Bae SJ, Cho K (2005) Renal cell carcinoma: Analysis of postoperative recurrence patterns. Radiology 234:189–196

    Article  PubMed  Google Scholar 

  19. Choudhri AH, Patel PR, Cunningham DA (1987) Uptake of 99mTc-DTPA by a renal oncocytoma. Eur J Nucl Med 13:311–312

    Article  PubMed  CAS  Google Scholar 

  20. Chybowski FM, Bergstralh EJ, Oesterling JE (1992) The effect of digital rectal examination on the serum prostate specific antigen concentration: results of a randomized study. J Urol 148:83–86

    PubMed  CAS  Google Scholar 

  21. Cremerius U, Effert PJ, Adam Get et al (1998) FDG PET for detection and therapy control of metastatic germ cell tumours. J Nucl Med 39:815–22

    PubMed  CAS  Google Scholar 

  22. Cremerius U, Wildberger J, Borchers H et al (1999) Does positron emission tomography using 18 fluoro-deoxy-2-deoxyglucose improve clinical staging of testicular cancer? Results of a study in 50 patients. Urology 54:900–9004

    Article  PubMed  CAS  Google Scholar 

  23. Davis BJ, Pisansky TM, Wilson TM et al (2000) Extent of extracapsular extension in localized prostate cancer. Urology 55:382–386

    Article  Google Scholar 

  24. de Jong IJ, Pruim J, Elsinga PhH et al (2003) Preoperative staging of pelvic lymphnodes in prostate cancer by C-11-choline PET. J Nucl Med 44:331–335

    PubMed  Google Scholar 

  25. de Wit M, Heicapell R, Bares R (2001) PET zur Stadieneinteilung und Therapiekontrolle bei Keimzelltumouren. Dtsch Ärztebl 98:C2710

    Google Scholar 

  26. DeGrado TR, Baldwin StW, Wang S et al (2001) Synthesis and evaluation of 18F-labeled choline analogs as oncologic tracers. J Nucl Med 42:1805–1814

    PubMed  CAS  Google Scholar 

  27. Demas BE, Hricak H (1992) The kidneys. In: Higgins CHB, Hricak H, Helms CA (eds) Magnetic resonance imaging of the body, 2nd edn. Raven Press, New York, pp 785–816

    Google Scholar 

  28. Dhingsa R, Qayyum A, Coakley VF et al (2004) Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology 230:215–220

    Article  PubMed  Google Scholar 

  29. Donnelly SE, Donnelly BJ, Saliken JC et al (2004) Prostate cancer: Gadolinium-enhanced MR imaging at 3 weeks compared with needle biopsy at 6 months after cryoablation. Radiology 231:published online

    Google Scholar 

  30. Dorn R et al (2003) Lymphoscintigraphy and sentinel lymph node (SLN) identification in prostate cancer: Results from 350 patients (Abstr. 15). Eur J Nucl Med Molecular Imaging 30:153

    Google Scholar 

  31. Dresel ST (2007) Wertigkeit der C-11 Cholin PET und PET/CT bei Patienten mit Verdacht auf Prostatakarzinom. Nuklearmedizin/Informationen, BBGN, Berlin 22:1–16

    Google Scholar 

  32. Effert PJ, Bares R, Handt S, Wolff JM, Büll U, Jakse G (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18-fluorinelabeled deoxyglucose. J Urology 155:994–998

    Article  CAS  Google Scholar 

  33. El Helou, Hör G (1979) 99mTc-methylene diphosphonate uptake in a primary Wilms’ tumour. Therapiewoche 29:7785–7795

    Google Scholar 

  34. Even-Sapir E, Metser U, Meshani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single-and multi-field-of view SPECT, 18F-fluoride, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  35. Farsad M, Castellucci P, Nanni C et al (2004) 11C-choline PET/CT imaging for localization of recurrent prostate cancer (Abstr. 204). Eur J Nucl Med Mol Imaging, Suppl 2, 31:S252

    Google Scholar 

  36. Fischman AJ, Thrall JH (2003) Who should read and interpret 18F-FDG PET studies? J Nucl Med 44:1197–1199

    PubMed  Google Scholar 

  37. Flamen P, Bossuyt A, De Greve J, Pipeleers-Marichal M, Keuppens F, Somers G (1993) Imaging of renal cell cancer with radiolabeled octreotide. Nucl Med Comm 14:873–877

    Article  CAS  Google Scholar 

  38. Fornara P (2003) PSA-Test-Gesellschaft für Urologie. Dtsch Ärztebl 100:C2117

    Google Scholar 

  39. Fricke E, Machtens S, Hofmann M et al (2003) Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med 30:607–611

    CAS  Google Scholar 

  40. Gallagher BM, Fowler JS, Gutterson NI et al (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of (18F)-deoxy-2 fluoro-D-glucose. J Nucl Med 19:1154

    PubMed  CAS  Google Scholar 

  41. Gann PH, Han M (2005) The natural history of clinically localized prostate cancer. J Am Med Ass (JAMA) 293:2149–51

    Article  CAS  Google Scholar 

  42. Garcia Fifueiras R, Martin CV, Isidro IRE (2007) MRI, CT offer answers to renal mass queries. Diag Imag Europe June/July:9–12

    Google Scholar 

  43. Garnick MB, Fair WR (1996) Prostate cancer: Emerging concepts (part I). Ann Intern 125:118–125

    CAS  Google Scholar 

  44. Goldenberg DM, De Land FH, Bennett SJ et al. (1983) Radioimmunodetection of prostatic cancer. In vivo use of radioactive antibodies against prostatic acid phosphatase for diagnosis and detection of prostate cancer by nuclear imaging. JAMA 250:630–635

    Article  PubMed  CAS  Google Scholar 

  45. Grosu AL, Krause BJ, Nestle U (2006) PET/CT in der Strahlentherapieplanung. Der Nuklearmediziner 29:151–58

    Article  Google Scholar 

  46. Hara T (2002) 11C-Choline and 2-deoxy-2-(18) fluoro-D-glucose in tumour imaging with positron emission tomography. Molecular Imaging Biol 4:267–273

    Article  Google Scholar 

  47. Hara T, Kosaka N, Kishi H (2002) Development of 18F-fluoroethylcholine for cancer imaging with PET: Synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–199

    PubMed  CAS  Google Scholar 

  48. Hardy JG, Anderson GS, Newble GM (1976) Uptake of 99mTc-pyrophospate by metastatic extragenital seminoma. J Nucl Med 17:105–106

    Google Scholar 

  49. Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymphnode metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  50. Harrison J, Ali A, Bonomi Ph, Prinz R (2000) The role of positron emission tomography in selecting patients with metastatic cancer for adrenalectomy. Am Surgeon 66:432–437

    PubMed  CAS  Google Scholar 

  51. Hautzele H, Müller-Mattheis V, Reinhardt MJ et al (2005) Validierung von F-18-FDG-PET und CT im Vergleich zur Histologie beim Peniskarzinom. Nuklearmedizin 44:V90

    Google Scholar 

  52. Heinisch M, Loidl W, Haim S et al (2005) PET/CT mit F18 Fluorcholin zum Restaging von Patienten mit Prostatakarzinom: Sinnvoll bei PSA <5 ng/ml? Nuklearmedizin 44:V88

    Google Scholar 

  53. Hengerer A, Mertelmeier T (2001) Molekularbiologische Methoden in der medizinischen Bildgebung. Electromedica 69:44–49

    Google Scholar 

  54. Hertel A, Baum RP, Baew-Christow T, Boeckmann W, Goldenberg DM, Jonas D, Hör G (1991) Erste klinische Erfahrungen mit einem Tc-99m markierten ANTI-AFP-FAB’-Antikörper bei metastasierenden Hodenkarzinomen und primären Leberzelltumouren ( P37 ). Nuklearmedizin 30:A60

    Google Scholar 

  55. Hoegerle S, Juengling F, Otte A et al (1998) Combined FDG and F-18-fluoride whole body PET: a feasible two-in-one-approach to cancer imaging. Radiology 209:253–258

    PubMed  CAS  Google Scholar 

  56. Hofer C, Laubenbacher C, Block T, et al (1999) Fluorine-18-fluordeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36:31–35

    Article  PubMed  CAS  Google Scholar 

  57. Hoh CK, Seltzer MA, Franklin J et al (1998) Positron emission tomography in urological oncology. J Urol:347–356

    Google Scholar 

  58. Hör G (2005) Prostatakarzinom: Von der Knochenszintigraphie zur molekularen (Nuklear-)Medizin/Aktuelle Entwicklungen in der Diagnostik(PET, PET/CT) und Therapie des Prostatakarzinoms. In: Mohnike W, Schmidt J (eds) In puncto druck+medien gmbh, Bonn, pp 30–31

    Google Scholar 

  59. Hör G (1993) Positronen-Emissions-Tomographie (PET)-Klinische Relevanz. Siemens, Best no. A91100-M2330-D694-01 60694 SD 03936.0:3–31

    Google Scholar 

  60. Hör G, Zindel C, Baum RP (1997) Nuklearmedizinische Diagnostik von Knochenmetastasen/Klinik der Skelettmetastasen, Grundlagen, Diagnostik, Therapie. In: Böttcher HD, Adamietz IA (eds) W. Zuckerschwerdt, Munich, Bern, Vienna 3:14–34

    Google Scholar 

  61. Hricak H, Demas BE, Williams RD et al (1985) Magnetic resonance imaging in the diagnosis and staging of renal and perirenal neoplasms. Radiology 154:709

    PubMed  CAS  Google Scholar 

  62. Hricak H, Schoder H, Ucar H et al (2003) Advances in imaging in the postoperative patient with a rising prostate specific antigen level. Semin Oncol 30:616–634

    Article  PubMed  Google Scholar 

  63. Hwang DR, Jerabek PA, Kadmon D, Kilbourn MR, Patrick TB, Welch MJ (1986) 2-(18F) fluoroputrescine: Preparation, biodistribution and mechanism of defluorination. Int J Appl Rad Isot 37:607–612

    CAS  Google Scholar 

  64. Kann PH (2003) Der Nebennierentumor: Ein altes Problem mit neuem Gesicht. Hess Ärztebl 8:395–397

    Google Scholar 

  65. Kato T, Tsukamoto E, Kuge Y et al (2002) Accumulation of 11C-acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med MolImag 29:1492–1495

    Article  CAS  Google Scholar 

  66. Kent DL, Larson EB (1992) Disease, level of impact, and quality of research. Three dimensions of clinical efficacy assessment applied to magnetic resonance imaging. Invest Radiol 27:245–254

    Article  PubMed  CAS  Google Scholar 

  67. Keppler JS (2005) PET and PET-CT reimbursement/ PET-CT (a case-based approach). In: Conti PS, Cham DK (eds) PET-CT: A case-based approach. Springer, Berlin Heidelberg New York Tokyo, pp 285–295

    Google Scholar 

  68. Kole AC, Hoekstr HJ, Sleijfer DT, Nieweg OE, Schraffordt-Koops H, Vaalburg W (1998) Carbon-11-Tyrosine imaging of metastatic testicular non-seminoma germcell tumours. J Nucl Med:1027–1029

    Google Scholar 

  69. Kotzerke J, Prang J, Neumaier B et al (2000) Experience with carbone-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27:1415–1419

    Article  PubMed  CAS  Google Scholar 

  70. Kotzerke J, Volkmer B, Neumaier B et al (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29:1380–1384

    Article  PubMed  CAS  Google Scholar 

  71. Kotzerke J, Volkmer BG, Glatting G et al (2003) Intraindividual comparison of (11C)-acetate and (11C) choline PET for detection of metastases of prostate cancer. Nuklearmedizin 42:25–30

    PubMed  CAS  Google Scholar 

  72. Kurhanewicz J, Swanson MG, Neson SJ et al (2002) Combined magnetic resonance imaging ans spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16:451–463

    Article  PubMed  Google Scholar 

  73. Kurhanewicz J, Vigneron DB, Hricak H et al (1996) Three-dimensional H1-MR spectroscopic imaging of the in-situ human prostate with high (0,24–0,7 cm3) spatial resolution. Radiology 198:795–805

    PubMed  CAS  Google Scholar 

  74. Kwee SA, Wei H, Sesterhenn I et al (2006) Localization of primary prostate cancer with dual phase 18F-fluorocholine-PET. J Nucl Med 47:262–269

    PubMed  Google Scholar 

  75. Lapela M, Leskinen-Kallio S, Varpula M et al (1995) Metabolic imaging of ovarian tumours with carbon-11-methionine: A PET study. J Nucl Med 36:2196–2200

    PubMed  CAS  Google Scholar 

  76. Larcos G, Mullan BP, Forstrom LA (1993) Scintigraphic findings of renal oncocytoma. Clin Nucl Med 18:884–886

    Article  PubMed  CAS  Google Scholar 

  77. Larson SM, Carrasquillo JA, Reynolds JC (1984) Radioimmunodetection and radioimmunotherapy. Cancer Invest 2:363–381

    Article  PubMed  CAS  Google Scholar 

  78. Larson StM, Schwartz LH (2006) 18F-FDG PET as a candidate for “qualified biomarker”: Functional assessment of treatment response in oncology (invited perspective). J Nucl Med 47:901–903

    PubMed  CAS  Google Scholar 

  79. Larson StM, Erdi Y, Akhurst T, Mazumdar M et al (1999) Tumour treatment response based on visual and quantitative changes in global tumour glycolysis using FDGPET imaging: The visual response score and the change in total lesion glycolysis. Clin Pos Imag 2:159–171

    Article  Google Scholar 

  80. Larson StM, Morris M, Gunther I et al (2004) Tumour localization of 16 beta-18F-fluoro-5 alpha-dihydrotestosteron versus 18F-FDG in patients with progressive metastatic prostate cancer. J Nucl Med 45:366–373

    PubMed  CAS  Google Scholar 

  81. Lassen U, Daugaard G, Eigtved A et al (2003) Whole-body FDG-PET in patients with stage I non-seminomatous germ cell tumours. Eur J Nucl Med 30:396–402

    CAS  Google Scholar 

  82. Liu A, Dence CS, Welch MJ, Katzenellenbogen JA (1992) Fluorine-18-labeled androgens: Radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer. J Nucl Med 33:724–734

    PubMed  CAS  Google Scholar 

  83. Loch T, Leuschner I, Genberg C et al (2000) Improvement of transrectal ultrasound. Artificial neural network (ANNA) in detection and staging of prostatic carcinoma. Urologe A 39:341–7

    Article  PubMed  CAS  Google Scholar 

  84. Lorente JA, Valencuela H, Morote J, Gelabert A (1999) Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur J Nucl Med 26:625–632

    Article  PubMed  CAS  Google Scholar 

  85. Luboldt HJ, Rübben H (2004) Früherkennung des Prostatakarzinoms (PSA-Test nur nach Aufklärung und Einwilligung des Patienten). Dtsch Ärztebl 101:1736–38

    Google Scholar 

  86. Machtens S, Bokemeyer C, Serth J, Jonas U, Kuczyk MA (1998) Alteration of the p53 tumour suppressor gene in prostate cancer: Analytical approaches and clinical implications. Onkologie 21:113–122

    Article  Google Scholar 

  87. Marchant J (2002) Screening trials focus on prostate cancer (report). Diagnostic Imag Europe 11:21–22

    Google Scholar 

  88. McPherson DW, Wolf AP, Fowler JS et al (1985) Synthesis and biodistribution of no-acarrier-added (l-11C) putrescine. J Nucl Med 26:1186–1189

    PubMed  CAS  Google Scholar 

  89. Medizinreport (2007) Neues in der Urologie 2005/2006. Sudwestdeutsche Gesellschaft für Urologie e.V. Hess Ärztebl 2:84

    Google Scholar 

  90. Messer PM, Blumstein NM, Gottfried HW et al (2004) C-11-Choline PET-CT in localization of local recurrence in patients with PSA progress after permanent brachytherapy of the prostate (Abstr. 202). Eur J Nucl Med Mol Imaging 31:S252

    Google Scholar 

  91. Montravers F, Rousseau C, Coublet JD et al (1998) In vivo inaccessibility of somatostatin receptors to 111-Inpentreotide in primary renal cell carcinoma. Nucl Med Commun 19:953–961

    Article  PubMed  CAS  Google Scholar 

  92. Morris JG, Coorey GJ, Dick R, Evans WA (1967) The diagnosis of renal tumours by radioisotope scanning. J Urol 97:40–54

    PubMed  CAS  Google Scholar 

  93. Nash AF, Melezinek I (2000) The role of prostate specific antigen measurement in the detection and management of prostate cancer. Endocrine-Related Cancer 7:37–51

    Article  PubMed  CAS  Google Scholar 

  94. Nunez R, Macapinlac HA, Yeung HWD et al (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43:46–55

    PubMed  Google Scholar 

  95. Oyama N, Akino H, Kanamaru H et al (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43:181–186

    PubMed  CAS  Google Scholar 

  96. Oyama N, Akino H, Suzuki Y et al (2001) FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Comm 22:963–969

    Article  CAS  Google Scholar 

  97. Oyama N, Akino H, Suzuki Y et al (2002) Prognostic value of 2-deoxy-2-(1-18) fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 4:99–194

    Article  PubMed  Google Scholar 

  98. Oyama N, Miller TR, Dedashti F et al (2003) 11C-Acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44:549–555

    PubMed  CAS  Google Scholar 

  99. Oyama N, Ponde DE, Dence C et al (2004) Monitoring of therapy in androgen-dependent prostate tumour model by measuring tumour proliferation. J Nucl Med 45:519–525

    PubMed  CAS  Google Scholar 

  100. Pantuck AJ, Berger F, Zisman A et al (2002) CL1-SR39: A nonivasive molecular imaging model of prostate cancer suicide gene therapy using positron emission tomography. J Urol 168:1193–1198

    Article  PubMed  CAS  Google Scholar 

  101. Pelosi E, Messa C, Sironi Set et al (2004) Value of integrated PET/CT for lesion localization in cancer patients: a comparative study. Eur J Nucl Med MolImaging 31:932–939i

    Google Scholar 

  102. Perälä-Heape M, Vihko P, Laine A, Heikkilä J, Vihko R (1991) Effects of tumour mass and circulating antigen on the biodistribution of 111In-labeled F(ab’)2 fragments of human prostatic acid phosphatase monoclonal antibody in nude mice bearing PC-82 human prostatic tumour xenografts. Eur J Nucl Med 18:339–345

    Article  PubMed  Google Scholar 

  103. Ponde DE, Dence CS, Oyama N et al (2007) 18F-Fluoroacetate: A potential acetate analog for prostate tumour imaging — In vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 48:420–28

    PubMed  CAS  Google Scholar 

  104. Poulakis V, Witzsch U, Becht E (2002) Prävention des Prostatakarzinoms durch Ernährung. Hess Ärztebl 7:395–402

    Google Scholar 

  105. Ragde H, Elgamal A, Scow PB et al (1998) Ten year disease-free survival after transperitoneal-sonography-guided iodine-125 brachytherapy with or without 45 gray external beam irradiation in the treatment of patients with clinically localized low or high Gleason grade prostate cancer. Cancer 83:989–1000

    Article  PubMed  CAS  Google Scholar 

  106. Rerris MK, Klonecke AS, Ross-McDougall I, Stamey TA (1991) Utilization of bone scans in conjunction with prostate-specific antigen levels in the surveillance for recurrence of adenocarcinoma after radical prostatectomy. J Nucl Med 32:1713–1717

    Google Scholar 

  107. Reske S, Kotzerke J (2001) FDG-PET for clinical use (results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III”, 21 July and 19 September 2000). Eur J Nucl Med 28:1707–172

    Article  PubMed  CAS  Google Scholar 

  108. Reske SN, Blumstein NM, Neumaier B et al (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47:1249–54

    PubMed  CAS  Google Scholar 

  109. Rifkin MD, Zerhouni EA et al (1990) Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer. N Engl J Med 323:621–626

    PubMed  CAS  Google Scholar 

  110. Römer W, Beckmann MW, Forst R et al (2005) SPECT/ spiral-CT hybrid imaging in unclear foci of increased bone metabolism: A case report. Röntgenpraxis 55:234–3

    PubMed  Google Scholar 

  111. Sauerbrunn BJL, Andrews GA, Hubner KF (1978) Ga-67 citrate imaging in tumours of the genitourinary tract:Report of cooperative study. J Nucl Med 19:470

    PubMed  CAS  Google Scholar 

  112. Scheidler J, Hricak H, Vigneron DB et al (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging-Clinicopathologic study. Radiology 213:473–480

    PubMed  CAS  Google Scholar 

  113. Scher B, Seitz M, Herzog R et al (2005) (F18) FDG-PET/ CT: Funktionelle Bildgebung zum Staging von Patienten mit Peniskarzinom (Abstr). Nuklearmedizin 44:V89

    Google Scholar 

  114. Scher B, Seitz M, Albinger W et al (2007) Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 34:45–53

    Article  PubMed  Google Scholar 

  115. Schmid DT, John H, Zweifel R et al (2004) 18F-Fluorocholine PET/CT: local functional-pathological correlation and whole body distribution in patients with prostate cancer (Abstr. 206). Eur J Nucl Med Mol Imaging (Suppl 2) 31:S252–253

    Google Scholar 

  116. Schmücking M, Baum RP, Griesinger F et al (2003) Molecular whole-body staging using positron emission tomography: Consequences for therapeutic management and metabolic radiation treatment planning. Recent Res Cancer Research 162:195–202

    Google Scholar 

  117. Schwartz MK (1995) Current status of tumour markers. Scand J Clin Lab Invest, Suppl. 221:55:5–14

    Article  CAS  Google Scholar 

  118. Schweyer St, Fayyazi A (2005) Pathogenese maligner Keimzelltumoren des Hodens. Dtsch Ärztebl 102:A2404–2407

    Google Scholar 

  119. Scopinaro F, De Vincentis G, Varvarigou AD et al (2003) 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur J Nucl Med 30:1378–1382

    Article  Google Scholar 

  120. Shen YY, Su CT, Chen GJ et al (2003) The value of 18F-fluordeoxyglucose positron emission tomography with additional help of tumour markers in cancer screening. Neoplasia 50:217–21

    CAS  Google Scholar 

  121. Shreve PD, Grossman HB, Gross MD et al (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2 (F-18-) fluoro D-glucose. Radiology 199:751–756

    PubMed  CAS  Google Scholar 

  122. Sodee DB, Makguria N, Faulhaber P et al (2000) Multicenter ProstaScint imaging findings in 2154 patients with prostate carcinoma. Urology 56:988–993

    Article  PubMed  CAS  Google Scholar 

  123. Stamey TA, Dietrick DD, Issa MM (1993) Large, organ confined, impalpable transition zone prostate cancer: association with metastatic levels of prostate specific antigen. J Urol 149:510–515

    PubMed  CAS  Google Scholar 

  124. Stamey TA, Graves HCB, Wehner N, Ferrari M, Freiha FS (1993) Early detection of residual prostate cancer after radical prostatectomy by an ultrasensitive assay for prostate specific antigen. J Urol 149:787–792

    PubMed  CAS  Google Scholar 

  125. Stöckle M, Lehmann J, Krege S et al (2007) Therapie und Prognose des lymphogen metastasierten Harnblasenkarzinoms. Dtsch Ärztebl 104(14):A959–63

    Google Scholar 

  126. Stuschke M, Budach V, Böhmer D (2004) Strahlentherapie des Prostatakarzinoms. Dtsch Ärztebl 101: A 2690–2694

    Google Scholar 

  127. Sun LQ, Mori T, Dence CS, al (2006) New approach to fully-automated synthesis of sodium (F-18) fluoroacetate: a simple and fast method using a commercial synthesizer. Nucl Med Biol 33:153–158

    Article  PubMed  CAS  Google Scholar 

  128. Thie JA, Hubner KF, Isidoro FP, Smith GT (2007) A weight index for the standardized uptake value in 2-deoxy-2-(F-18)fluoro-D-glucose positron emission tomography. Mol Imaging Biol 9:91–8

    Article  PubMed  Google Scholar 

  129. Thilmann Ch, Oelfke U, Huber P, Debus J (2006) Intensitätsmodulierte Strahlenbehandlung — neue Perspektiven für die Tumortherapie. Dtsch Ärztebl 103(48):A 3268–73

    Google Scholar 

  130. Tokunaga M, Yasuda M, Miyakita H et al (2005) Screening program of prostate cancer at Tokai University Hospital: Characterization of prostate-specific antigen measurement. Tokai J Exp Clin Med 30:103–110

    PubMed  Google Scholar 

  131. van Tinteren H et al (2004) Do we need randomized trials to evaluate diagnostic procedures (for/against). Eur J Nucl Med Mol Imag 31:129–135

    Article  Google Scholar 

  132. van Tinteren H, Hoekstra OS, Smit EF et al (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non small cell lung cancer: The PLUS multicentre randomized trial. Lancet 359:1388–1392

    Article  PubMed  Google Scholar 

  133. Wang L, Mullerad M, Chen H et al (2004) Prostate cancer: Incremental value of endorectal MR imaging findings for prediction of exracapsular extension. Radiology 232:133–39

    Article  PubMed  Google Scholar 

  134. Wang Y, Chiu E, Rosenberg J et al (2007) Standardized upake value atlas: Characterization of physiological 2-deoxy-2-(18F) fluoro-D-glucose uptake in normal tissues. Mol Imaging Biol 9:83–90

    Article  PubMed  Google Scholar 

  135. Wawroschek F, Vogt H, Weckermann D et al (1999) Wie sicher ist die modifizierte pelvine Lymphadenektomie beim Prostatakarzinom? Ergebnisse eines neuen Staging-Verfahrens. Akt Urol 30:1–2

    Article  Google Scholar 

  136. Wawroschek F, Wengenmair H, Senekowitsch-Schmidtke R et al (2003) Prostate lymphoscintigraphy and radio-guided surgery for sentinel symphnode identification in prostate cancer. Technique and results of the first 350 cases. Urol Int 70:303–310

    Article  PubMed  Google Scholar 

  137. Welch MJ, Coleman RE, Straatman MG, Asberry BE, Primeau JL, Fair WR, Ter-Pogossian MM (1977) Carbon-11 labeled methylated polyamine analogs: Uptake in prostate and tumour in animal models. J Nucl Med 18:74–78

    PubMed  CAS  Google Scholar 

  138. Wilson CB, Young HE, Ott RJ et al (1995) Imaging metastatic testicular germ cell tumours with 18F-FDG positron emission tomography: prospects for detection and management. Eur J Nucl Med 22:508–13

    PubMed  CAS  Google Scholar 

  139. Yaeger T (2004) Re: Who should read PET studies (s.6804). J Nucl Med 45:36

    Google Scholar 

  140. Yamaguchi T, Lee J, Uemura H et al (2005) Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. J Nucl Med 46:742–748

    Google Scholar 

  141. Yeh SDJ, Imbriaco M, Garza D et al (1995) Twenty percent of bony metastases of hormone resistant prostate cancer are detected by PET-FDG whole body scanning (poster Abstr. 891). J Nucl Med 36:198

    Google Scholar 

  142. Yen T, Lai C, Ma S et al (2006) Comparative benefits and limitations of 18F-FDG PET and CT MRI in documented or suspected recurrent cervical cancer. Eur J Nucl Med Mol Imaging 33:1399–1407

    Article  PubMed  Google Scholar 

  143. Yoshimoto M, Waki A, Obata A et al (2004) Radiolabeled cholin as a proliferation marker: comparison with labeled acetate. Nuc Med Biol 31:859–865

    Article  CAS  Google Scholar 

  144. Yoshimoto M, Waki A, Yonekura Y et al (2001) Characterization of acetate metabolism in tumour cells in relation to cell proliferation. Nucl Med Bio 28:117–122

    Article  CAS  Google Scholar 

  145. Zanzonico PB, Finn R, Pentlow KS et al (2004) PETbased radiation dosimetry in man of 18F-fluorodidydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med 45:1966–1971

    PubMed  CAS  Google Scholar 

  146. Sala E, Eberhardt C, Akin O et al (2006) Endorectal MR Imaging before salvage prostatectomy Radiol 238:176–183

    Article  Google Scholar 

  147. Fütterer J et al (2006) Prostate cancer: local staging at 3-T endorectal MR imaging. Radiol 238:184–191

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

(2008). Urology. In: Mohnike, W., Hör, G., Schelbert, H.R. (eds) Oncologic and Cardiologic PET/CT-Diagnosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74091-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74091-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74090-2

  • Online ISBN: 978-3-540-74091-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics