Skip to main content

Cardiac PET and PET/CT

the Situation in the USA

  • Chapter
  • 1163 Accesses

Abstract

Positron emission tomography has broadened the scope of non-invasive approaches to the study of the human cardiovascular system and for the detection of cardiac disease. Not only is it quantitative and can measure functional processes in absolute units, it also reaches beyond tissue perfusion and fuel substrate delivery. It affords delineation of downstream processes, including substrate metabolism and regulatory mechanisms, as well as biological events at the cellular and molecular level. Combined with computed tomography, PET adds functional information to structurally defined alterations of the cardiovascular system as delineated with CT. Conversely, CT images of the cardiovascular anatomy serve as a map for localization of spatially confi ned molecular and cellular events uncovered with PET. This chapter examines the current state of cardiac PET and PET/CT and how combined structure-function imaging contributes to and refi nes the characterization of cardiovascular disease. It focuses on those areas of greatest clinical impact, but also explores emerging approaches of future clinical value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

16.6 References

  1. Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA (2007) Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 34:1765–1774

    Article  PubMed  Google Scholar 

  2. Schelbert HR, Phelps ME, Huang SC et al (1981) N-13 ammonia as an indicator of myocardial blood flow. Circulation 63:1259–1272

    PubMed  CAS  Google Scholar 

  3. Krivokapich J, Smith GT, Huang SC et al (1989) 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation 80:1328–1337

    PubMed  CAS  Google Scholar 

  4. El Fakhri G, Sitek A, Guerin B, Kijewski MF, Di Carli MF, Moore SC (2005) Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med 46:1264–1271

    PubMed  Google Scholar 

  5. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE (1990) Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15:1032–1042

    PubMed  CAS  Google Scholar 

  6. Kuhle WG, Porenta G, Huang SC et al (1992) Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 86:1004–1017

    PubMed  CAS  Google Scholar 

  7. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF (2007) Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 48:349–358

    PubMed  Google Scholar 

  8. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S (2007) Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med 48:1112–1121

    Article  PubMed  Google Scholar 

  9. Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753

    Article  PubMed  Google Scholar 

  10. Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197

    Article  PubMed  Google Scholar 

  11. Di Carli MF, Dorbala S, Curillova Z et al (2007) Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 14:799–809

    Article  PubMed  Google Scholar 

  12. Santana CA, Folks RD, Garcia EV et al (2007) Quantitative (82)Rb PET/CT: development and validation of myocardial perfusion database. J Nucl Med 48:1122–1128

    Article  PubMed  Google Scholar 

  13. Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG (2007) Artefacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med 48:188–193

    PubMed  Google Scholar 

  14. Klocke FJ, Baird MG, Lorell BH et al (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation 108:1404–1418

    Article  PubMed  Google Scholar 

  15. Yoshinaga K, Chow BJ, Williams K et al (2006) What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 48:1029–1039

    Article  PubMed  Google Scholar 

  16. Bateman TM, Heller GV, McGhie AI et al (2006) Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13:24–33

    Article  PubMed  Google Scholar 

  17. Go RT, Marwick TH, MacIntyre WJ et al (1990) A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 31:1899–1905

    PubMed  CAS  Google Scholar 

  18. Schelbert HR, Wisenberg G, Phelps ME et al (1982) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 49:1197–1207

    Article  PubMed  CAS  Google Scholar 

  19. Stewart RE, Schwaiger M, Molina E et al (1991) Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 67:1303–1310

    Article  PubMed  CAS  Google Scholar 

  20. Tamaki N, Yonekura Y, Senda M et al (1988) Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 29:1181–1188

    PubMed  CAS  Google Scholar 

  21. Di Carli MF, Hachamovitch R (2007) New technology for noninvasive evaluation of coronary artery disease. Circulation 115:1464–1480

    Article  PubMed  Google Scholar 

  22. Demer LL, Gould KL, Goldstein RA et al (1989) Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 79:825–835

    PubMed  CAS  Google Scholar 

  23. Chan SY, Brunken RC, Czernin J et al (1992) Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol 20:979–985

    PubMed  CAS  Google Scholar 

  24. Chow BJ, Ananthasubramaniam K, dekemp RA, Dalipaj MM, Beanlands RS, Ruddy TD (2005) Comparison of treadmill exercise versus dipyridamole stress with myocardial perfusion imaging using rubidium-82 positron emission tomography. J Am Coll Cardiol 45:1227–1234

    Article  PubMed  Google Scholar 

  25. Chow BJ, Beanlands RS, Lee A et al (2006) Treadmill exercise produces larger perfusion defects than dipyridamole stress N-13 ammonia positron emission tomography. J Am Coll Cardiol 47:411–416

    Article  PubMed  Google Scholar 

  26. Hess OM, Buchi M, Kirkeeide R et al (1990) Potential role of coronary vasoconstriction in ischaemic heart disease: effect of exercise. Eur Heart J 11Suppl B:58–64

    PubMed  Google Scholar 

  27. Verna E, Ceriani L, Provasoli S, Scotti S, Ghiringhelli S (2007) Larger perfusion defects with exercise compared with dipyridamole SPECT (exercise-dipyridamole mismatch) may reflect differences in epicardial and microvascular coronary dysfunction: when the stressor matters. J Nucl Cardiol 14:818–826

    Article  PubMed  Google Scholar 

  28. Parodi O, Schelbert HR, Schwaiger M, Hansen H, Selin C, Hoffman EJ (1984) Cardiac emission computed tomography: underestimation of regional tracer concentrations due to wall motion abnormalities. J Comput Assist Tomogr 8:1083–1092

    Article  PubMed  CAS  Google Scholar 

  29. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF (2007) Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 49:1052–1058

    Article  PubMed  CAS  Google Scholar 

  30. Parkash R, deKemp RA, Ruddy TD et al (2004) Potential utility of rubidium 82PET quantification in patients with three-vessel coronary artery disease. J Nucl Cardiol 11:440–449

    Article  PubMed  CAS  Google Scholar 

  31. Di Carli M, Czernin J, Hoh CK et al (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91:1944–1951

    PubMed  Google Scholar 

  32. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330:1782–1788

    Article  PubMed  CAS  Google Scholar 

  33. Gould KL, Nakagawa Y, Nakagawa K et al (2000) Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation 101:1931–1939

    PubMed  CAS  Google Scholar 

  34. Hernandez-Pampaloni M, Keng FY, Kudo T, Sayre JS, Schelbert HR (2001) Abnormal longitudinal, base-toapex myocardial perfusion gradient by quantitative blood flow measurements in patients with coronary risk factors. Circulation 104:527–532

    Article  PubMed  CAS  Google Scholar 

  35. Schindler TH, Schelbert HH (2007) “Mismatch” in regional myocardial perfusion defects during exercise and pharmacologic vasodilation: a noninvasive marker of epicardial vasomotor dysfunction? J Nucl Cardiol 14:769–774

    Article  PubMed  Google Scholar 

  36. Schindler TH, Nitzsche EU, Olschewski M et al (2004) PET-measured responses of MBF to cold pressor testing correlate with indices of coronary vasomotion on quantitative coronary angiography. J Nucl Med 45:419–428

    PubMed  Google Scholar 

  37. Schindler TH, Nitzsche EU, Schelbert HR et al (2005) Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 45:1505–1512

    Article  PubMed  Google Scholar 

  38. Baller D, Notohamiprodjo G, Gleichmann U, Holzinger J, Weise R, Lehmann J (1999) Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation 99:2871–2875

    PubMed  CAS  Google Scholar 

  39. Quinones MJ, Hernandez-Pampaloni M, Schelbert H et al (2004) Coronary vasomotor abnormalities in insulinresistant individuals. Ann Intern Med 140:700–708

    PubMed  Google Scholar 

  40. Schindler TH, Facta AD, Prior JO et al (2007) Improvement in coronary vascular dysfunction produced with euglycaemic control in patients with type 2 diabetes. Heart 93:345–349

    Article  PubMed  CAS  Google Scholar 

  41. Wielepp P, Baller D, Gleichmann U, Pulawski E, Horstkotte D, Burchert W (2005) Beneficial effects of atorvastatin on myocardial regions with initially low vasodilatory capacity at various stages of coronary artery disease. Eur J Nucl Med Mol Imaging 32:1371–1377

    Article  PubMed  CAS  Google Scholar 

  42. Yokoyama I, Ohtake T, Momomura S et al (1998) Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 47:119–124

    Article  PubMed  CAS  Google Scholar 

  43. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035

    Article  PubMed  CAS  Google Scholar 

  44. Neglia D, Michelassi C, Trivieri MG et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    Article  PubMed  Google Scholar 

  45. Yokoyama I, Yonekura K, Ohtake T et al (2000) Coronary microangiopathy in type 2 diabetic patients: relation to glycemic control, sex, and microvascular angina rather than to coronary artery disease. J Nucl Med 41:978–985

    PubMed  CAS  Google Scholar 

  46. Marwick TH, Shan K, Patel S, Go RT, Lauer MS (1997) Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 80:865–870

    Article  PubMed  CAS  Google Scholar 

  47. Gaemperli O, Valenta I, Schepis T et al (2008) Coronary 64-slice CT angiography predicts outcome in patients with known or suspected coronary artery disease. Eur Radiol (in press)

    Google Scholar 

  48. Pundziute G, Schuijf JD, Jukema JW et al (2007) Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol 49:62–70

    Article  PubMed  Google Scholar 

  49. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  50. Gaemperli O, Schepis T, Koepfli P et al (2007) Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 34:1162–1171

    Article  PubMed  Google Scholar 

  51. Hacker M, Jakobs T, Hack N et al (2007) Sixty-four-slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging 34:4–10

    Article  PubMed  Google Scholar 

  52. Hacker M, Jakobs T, Matthiesen F et al (2005) Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med 46:1294–1300

    PubMed  Google Scholar 

  53. Rispler S, Keidar Z, Ghersin E et al (2007) Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 49:1059–1067

    Article  PubMed  Google Scholar 

  54. Schuijf JD, Wijns W, Jukema JW et al (2006) Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 48:2508–2514

    Article  PubMed  Google Scholar 

  55. Merhige ME, Breen WJ, Shelton V, Houston T, D’Arcy BJ, Perna AF (2007) Impact of myocardial perfusion imaging with PET and (82)Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management. J Nucl Med 48:1069–1076

    Article  PubMed  Google Scholar 

  56. Berman DS, Hachamovitch R, Kiat H et al (1995) Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 26:639–647

    Article  PubMed  CAS  Google Scholar 

  57. Berman DS, Hachamovitch R, Shaw LJ et al (2006) Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: Noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J Nucl Med 47:1107–1118

    PubMed  Google Scholar 

  58. Di Carli MF, Hachamovitch R (2008) Hybrid PET/CT is greater than the sum of its parts. J Nucl Cardiol 15:118–122

    Article  PubMed  Google Scholar 

  59. Rozanski A, Gransar H, Wong ND et al (2007) Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy. J Am Coll Cardiol 49:1352–1361

    Article  PubMed  CAS  Google Scholar 

  60. Schenker MP, Dorbala S, Hong EC et al (2008) Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 117:1693–1700

    Article  PubMed  Google Scholar 

  61. Gaemperli O, Schepis T, Valenta I et al (2007) Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J Nucl Med 48:696–703

    Article  PubMed  Google Scholar 

  62. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–221

    Article  PubMed  CAS  Google Scholar 

  63. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985

    Article  PubMed  CAS  Google Scholar 

  64. Vanoverschelde JL, Wijns W, Depre C et al (1993) Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87:1513–1523

    PubMed  CAS  Google Scholar 

  65. Sun KT, Czernin J, Krivokapich J et al (1996) Effects of dobutamine stimulation on myocardial blood flow, glucose metabolism, and wall motion in normal and dysfunctional myocardium. Circulation 94:3146–3154

    PubMed  CAS  Google Scholar 

  66. Elsasser A, Schlepper M, Klovekorn WP et al (1997) Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 96:2920–2931

    PubMed  CAS  Google Scholar 

  67. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  68. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH (2007) Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 32:375–410

    Article  PubMed  Google Scholar 

  69. Selvanayagam JB, Kardos A, Francis JM et al (2004) Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 110:1535–1541

    Article  PubMed  Google Scholar 

  70. Fallavollita JA, Canty JM Jr (1999) Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: evidence for chronic stunning in pigs. Circulation 99:2798–2805

    PubMed  CAS  Google Scholar 

  71. Fallavollita JA, Perry BJ, Canty JM Jr (1997) 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium. Evidence for transmural variations in chronic hibernating myocardium. Circulation 95:1900–1909

    PubMed  CAS  Google Scholar 

  72. Zhang X, Dahlbom M, Prior JO et al (2005) Is stressrest myocardial perfusion imaging with PET predictive of the presence of viable myocardium in end-state coronary artery disease patients? J Nucl Med 46:175P (abstract)

    Google Scholar 

  73. Zhang X, Schindler TH, Sayre J, Dahlbom M, Schelbert HR (2006) Severity of regional stress-induced perfusion defects and myocardial viability in patients with ischemic cardiomyopathy and poor left ventricular function. J Nucl Med 47:124P (abstract)

    Google Scholar 

  74. Akinboboye OO, Idris O, Cannon PJ, Bergmann SR (1999) Usefulness of positron emission tomography in defining myocardial viability in patients referred for cardiac transplantation. Am J Cardiol 83:1271–1274, A9

    Article  PubMed  CAS  Google Scholar 

  75. Dreyfus GD, Duboc D, Blasco A et al (1994) Myocardial viability assessment in ischemic cardiomyopathy: benefits of coronary revascularization. Ann Thorac Surg 57:1402–7; discussion 1407–1408

    PubMed  CAS  Google Scholar 

  76. Tillisch J, Brunken R, Marshall R et al (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888

    PubMed  CAS  Google Scholar 

  77. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343

    Article  PubMed  CAS  Google Scholar 

  78. Schelbert HR, Beanlands R, Bengel F et al (2003) PET myocardial perfusion and glucose metabolism imaging: Part 2-Guidelines for interpretation and reporting. J Nucl Cardiol 10:557–571

    Article  PubMed  Google Scholar 

  79. Porenta G, Kuhle W, Czernin J et al (1992) Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET images. J Nucl Med 33:1628–1636

    PubMed  CAS  Google Scholar 

  80. Gerber BL, Ordoubadi FF, Wijns W et al (2001) Positron emission tomography using (18)F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of postischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter Study on Use of (18)F-fluoro-deoxyglucose Positron Emission Tomography for the Detection of Myocardial Viability. Eur Heart J 22:1691–1701

    Article  PubMed  CAS  Google Scholar 

  81. Knuuti MJ, Nuutila P, Ruotsalainen U et al (1993) The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET. J Nucl Med 34:2068–2075

    PubMed  CAS  Google Scholar 

  82. Knuuti MJ, Saraste M, Nuutila P et al (1994) Myocardial viability: Fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J 127:785–796

    Article  PubMed  CAS  Google Scholar 

  83. Slart RH, Bax JJ, van Veldhuisen DJ et al (2006) Prediction of functional recovery after revascularization in patients with coronary artery disease and left ventricular dysfunction by gated FDG-PET. J Nucl Cardiol 13:210–219

    Article  PubMed  Google Scholar 

  84. Fath-Ordoubadi F, Pagano D, Marinho NV, Keogh BE, Bonser RS, Camici PG (1998) Coronary revascularization in the treatment of moderate and severe postischemic left ventricular dysfunction. Am J Cardiol 82:26–31

    Article  PubMed  CAS  Google Scholar 

  85. vom Dahl J, Altehoefer C, Sheehan FH et al (1996) Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol 28:948–958

    Article  Google Scholar 

  86. Machac J, Bacharach SL, Bateman TM et al (2006) Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 13:e121–151

    Article  PubMed  Google Scholar 

  87. Bax JJ, Poldermans D, Elhendy A et al (1999) Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J Am Coll Cardiol 34:163–169

    Article  PubMed  CAS  Google Scholar 

  88. Nagueh SF, Vaduganathan P, Ali N et al (1997) Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography. J Am Coll Cardiol 29:985–993

    Article  PubMed  CAS  Google Scholar 

  89. Schinkel AF, Poldermans D, Vanoverschelde JL et al (2004) Incidence of recovery of contractile function following revascularization in patients with ischemic left ventricular dysfunction. Am J Cardiol 93:14–17

    Article  PubMed  Google Scholar 

  90. Pagano D, Townend JN, Littler WA, Horton R, Camici PG, Bonser RS (1998) Coronary artery bypass surgery as treatment for ischemic heart failure: the predictive value of viability assessment with quantitative positron emission tomography for symptomatic and functional outcome. J Thorac Cardiovasc Surg 115:791–799

    Article  PubMed  CAS  Google Scholar 

  91. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158

    Article  PubMed  Google Scholar 

  92. Desideri A, Cortigiani L, Christen AI et al (2005) The extent of perfusion-F18-fluorodeoxyglucose positron emission tomography mismatch determines mortality in medically treated patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 46:1264–1269

    Article  PubMed  Google Scholar 

  93. Schinkel AF, Poldermans D, Rizzello V et al (2004) Why do patients with ischemic cardiomyopathy and a substantial amount of viable myocardium not always recover in function after revascularization? J Thorac Cardiovasc Surg 127:385–390

    Article  PubMed  Google Scholar 

  94. Marwick TH, Nemec JJ, Lafont A, Salcedo EE, MacIntyre WJ (1992) Prediction by postexercise fluoro-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol 69:854–859

    Article  PubMed  CAS  Google Scholar 

  95. Carluccio E, Biagioli P, Alunni G et al (2006) Patients with hibernating myocardium show altered left ventricular volumes and shape, which revert after revascularization: evidence that dyssynergy might directly induce cardiac remodeling. J Am Coll Cardiol 47:969–977

    Article  PubMed  Google Scholar 

  96. Rahimtoola SH, La Canna G, Ferrari R (2006) Hibernating myocardium: another piece of the puzzle falls into place. J Am Coll Cardiol 47:978–980

    Article  PubMed  Google Scholar 

  97. Louie HW, Laks H, Milgalter E et al (1991) Ischemic cardiomyopathy. Criteria for coronary revascularization and cardiac transplantation. Circulation 84:III290–295

    PubMed  CAS  Google Scholar 

  98. Haas F, Augustin N, Holper K et al (2000) Time course and extent of improvement of dysfunctioning myocardium in patients with coronary artery disease and severely depressed left ventricular function after revascularization: correlation with positron emission tomographic findings. J Am Coll Cardiol 36:1927–1934

    Article  PubMed  CAS  Google Scholar 

  99. Haas F, Haehnel CJ, Picker W et al (1997) Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 30:1693–1700

    Article  PubMed  CAS  Google Scholar 

  100. Beanlands RS, Hendry PJ, Masters RG, deKemp RA, Woodend K, Ruddy TD (1998) Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 98:II51–56

    PubMed  CAS  Google Scholar 

  101. Schwarz ER, Schoendube FA, Kostin S et al (1998) Prolonged myocardial hibernation exacerbates cardiomyocyte degeneration and impairs recovery of function after revascularization. J Am Coll Cardiol 31:1018–1026

    Article  PubMed  CAS  Google Scholar 

  102. Di Carli MF, Davidson M, Little R et al (1994) Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 73:527–533

    Article  PubMed  Google Scholar 

  103. Di Carli MF, Asgarzadie F, Schelbert HR et al (1995) Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 92:3436–444

    PubMed  Google Scholar 

  104. Choe YH, Choo KS, Jeon ES, Gwon HC, Choi JH, Park JE (2007) Comparison of MDCT and MRI in the detection and sizing of acute and chronic myocardial infarcts. Eur J Radiol (in press)

    Google Scholar 

  105. Cwajg JM, Cwajg E, Nagueh SF et al (2000) End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution T1-201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol 35:1152–1161

    Article  PubMed  CAS  Google Scholar 

  106. La Canna G, Rahimtoola SH, Visioli O et al (2000) Sensitivity, specificity, and predictive accuracies of noninvasive tests, singly and in combination, for diagnosis of hibernating myocardium. Eur Heart J 21:1358–1367

    Article  PubMed  Google Scholar 

  107. Di Carli MF, Maddahi J, Rokhsar S et al (1998) Long-term survival of patients with coronary artery disease and left ventricular dysfunction: implications for the role of myocardial viability assessment in management decisions. J Thorac Cardiovasc Surg 116:997–1004

    Article  PubMed  Google Scholar 

  108. Bello D, Shah DJ, Farah GM et al (2003) Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation 108:1945–1953

    Article  PubMed  CAS  Google Scholar 

  109. Cleland JG, Pennell DJ, Ray SG et al (2003) Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): randomised controlled trial. Lancet 362:14–21

    Article  PubMed  CAS  Google Scholar 

  110. Hummel JP, Lindner JR, Belcik JT et al (2005) Extent of myocardial viability predicts response to biventricular pacing in ischemic cardiomyopathy. Heart Rhythm 2:1211–1217

    Article  PubMed  Google Scholar 

  111. Ypenburg C, Schalij MJ, Bleeker GB et al (2006) Extent of viability to predict response to cardiac resynchronization therapy in ischemic heart failure patients. J Nucl Med 47:1565–1570

    PubMed  Google Scholar 

  112. Ypenburg C, Schalij MJ, Bleeker GB et al (2007) Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur Heart J 28:33–41

    Article  PubMed  Google Scholar 

  113. Achenbach S, Daniel WG (2007) Current role of cardiac computed tomography. Herz 32:97–107

    Article  PubMed  Google Scholar 

  114. Fuster V, Fayad ZA, Moreno PR, Poon M, Corti R, Badimon JJ (2005) Atherothrombosis and high-risk plaque: Part II: approaches by noninvasive computed tomographic/magnetic resonance imaging. J Am Coll Cardiol 46:1209–1218

    Article  PubMed  CAS  Google Scholar 

  115. Nighoghossian N, Derex L, Douek P (2005) The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke 36:2764–2772

    Article  PubMed  Google Scholar 

  116. Belhocine T, Blockmans D, Hustinx R, Vandevivere J, Mortelmans L (2003) Imaging of large vessel vasculitis with (18)FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging 30:1305–1313

    Article  PubMed  Google Scholar 

  117. Meller J, Strutz F, Siefker U et al (2003) Early diagnosis and follow-up of aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging 30:730–736

    PubMed  CAS  Google Scholar 

  118. Mandell BF, Hoffman GS (2005) Rheumatic diseases and the cardiovascular system. In: Zipes DP, Libby P, Bonow RO, Braunwald E, eds. Braunwald’s heart disease, 7th edn. Elsevier Saunders, Philadelphia, pp 2101–2116

    Google Scholar 

  119. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    PubMed  CAS  Google Scholar 

  120. Walter MA, Melzer RA, Schindler C, Muller-Brand J, Tyndall A, Nitzsche EU (2005) The value of [18F]FDGPET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging 32:674–681

    Article  PubMed  Google Scholar 

  121. Tawakol A, Migrino RQ, Bashian GG et al (2006) In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 48:1818–1824

    Article  PubMed  Google Scholar 

  122. Blockmans D, de Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H (2006) Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum 55:131–137

    Article  PubMed  Google Scholar 

  123. Arend WP, Michel BA, Bloch DA et al (1990) The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 33:1129–1134

    Article  PubMed  CAS  Google Scholar 

  124. Hunder GG, Bloch DA, Michel BA et al (1990) The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 33:1122–1128

    PubMed  CAS  Google Scholar 

  125. Kobayashi Y, Ishii K, Oda K et al (2005) Aortic wall inflammation due to Takayasu arteritis imaged with 18F-FDG PET coregistered with enhanced CT. J Nucl Med 46:917–922

    PubMed  Google Scholar 

  126. Meller J, Grabbe E, Becker W, Vosshenrich R (2003) Value of F-18 FDG hybrid camera PET and MRI in early Takayasu aortitis. Eur Radiol 13:400–405

    PubMed  CAS  Google Scholar 

  127. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    PubMed  CAS  Google Scholar 

  128. Narula J, Finn AV, Demaria AN (2005) Picking plaques that pop. J Am Coll Cardiol 45:1970–1973

    Article  PubMed  Google Scholar 

  129. Ben-Haim S, Kupzov E, Tamir A, Israel O (2004) Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 45:1816–1821

    PubMed  Google Scholar 

  130. Dunphy MP, Freiman A, Larson SM, Strauss HW (2005) Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med 46:1278–1284

    PubMed  Google Scholar 

  131. Tatsumi M, Cohade C, Nakamoto Y, Wahl RL (2003) Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 229:831–837

    Article  PubMed  Google Scholar 

  132. Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A (2002) 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med 32:70–76

    Article  PubMed  Google Scholar 

  133. Davies JR, Rudd JH, Fryer TD et al (2005) Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 36:2642–2647

    Article  PubMed  Google Scholar 

  134. Rudd JH, Warburton EA, Fryer TD et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711

    Article  PubMed  CAS  Google Scholar 

  135. Tawakol A, Migrino RQ, Hoffmann U et al (2005) Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 12:294–301

    Article  PubMed  Google Scholar 

  136. Ogawa M, Ishino S, Mukai T et al (2004) (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 45:1245–1250

    PubMed  CAS  Google Scholar 

  137. Tahara N, Kai H, Ishibashi M et al (2006) Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48:1825–1831

    Article  PubMed  CAS  Google Scholar 

  138. Tahara N, Kai H, Nakaura H et al (2007) The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose-positron emission tomography. Eur Heart J 28:2243–2248

    Article  PubMed  CAS  Google Scholar 

  139. Rudd JH, Myers KS, Bansilal S et al (2007) (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 50:892–896

    Article  PubMed  Google Scholar 

  140. Ben-Haim S, Kupzov E, Tamir A, Frenkel A, Israel O (2006) Changing patterns of abnormal vascular wall F-18 fluorodeoxyglucose uptake on follow-up PET/CT studies. J Nucl Cardiol 13:791–800

    Article  PubMed  Google Scholar 

  141. Paulmier B, Duet M, Khayat R et al (2008) Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 15:209–217

    Article  PubMed  Google Scholar 

  142. Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC (2007) Clinical myocardial perfusion PET/CT. J Nucl Med 48:783–793

    Article  PubMed  Google Scholar 

  143. Schwaiger M, Ziegler S, Nekolla SG (2005) PET/CT: challenge for nuclear cardiology. J Nucl Med 46:1664–1678

    PubMed  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this chapter

Cite this chapter

(2008). Cardiac PET and PET/CT. In: Mohnike, W., Hör, G., Schelbert, H.R. (eds) Oncologic and Cardiologic PET/CT-Diagnosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74091-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74091-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74090-2

  • Online ISBN: 978-3-540-74091-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics