Skip to main content

Visualization of Fixed Charges Stored in Condensed Matter and Its Application to Memory Technology

  • Chapter
  • 1083 Accesses

Part of the book series: Nano Science and Technolgy ((NANO))

Abstract

Scanning nonlinear dielectric microscopy (SNDM) with super-high resolution is described. Experimental results for the ferroelectric domain and the visualization of charge stored in flash memories are given, following the description of the theory and principle of SNDM. Next, a higher-order nonlinear dielectric imaging method and noncontact SNDM (NC-SNDM) are proposed. The first achievement of atomic resolution in capacitance measurement is successfully demonstrated using this NC-SNDM technique. In addition to these techniques, a new 3D-type of SNDM to measure the 3D distribution of ferroelectric polarization is developed. Finally, a very high density next-generation ferroelectric data storage device based on SNDM is demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cho Y, Kirihara A, Saeki T (1995) Denshi Joho Tsushin Gakkai Ronbunshi J78-C-1:593 (in Japanese)

    Google Scholar 

  2. Cho Y, Kirihara A, Saeki T (1996) Rev Sci Instrum 67:2297

    Article  CAS  Google Scholar 

  3. Cho Y, Atsumi S, Nakamura K (1997) Jpn J Appl Phys 36:3152

    Article  CAS  Google Scholar 

  4. Cho Y, Kazuta S, Matsuura K (1999) Appl Phys Lett 72:2833

    Article  Google Scholar 

  5. Odagawa H, Cho Y (2000) Surf Sci 463:L621

    Article  CAS  Google Scholar 

  6. Honda K, Cho Y (2005) Appl Phys Lett 86:013501

    Article  Google Scholar 

  7. Honda K, Hashimoto S, Cho Y (2005) Appl Phys Lett 86:063515

    Article  Google Scholar 

  8. Honda K, Hashimoto S, Cho Y (2005) Nanotechnology 16:90

    Article  Google Scholar 

  9. Honda K, Hashimoto S, Cho Y (2006) Nanotechnology 17:S185

    Article  CAS  Google Scholar 

  10. Cho Y, Ohara K (2001) Appl Phys Lett 79:3842

    Article  CAS  Google Scholar 

  11. Ohara K, Cho Y (2005) Nanotechnology 16:54

    Article  Google Scholar 

  12. Ruda HE, Shik A (2003) Phys Rev B 67:235309

    Article  Google Scholar 

  13. Ruda HE, Shik A (2005) Phys Rev B 71:075316

    Article  Google Scholar 

  14. Hirose R, Ohara K, Cho Y (2007) Nanotechnology 18:084014

    Article  Google Scholar 

  15. Odagawa H, Cho Y (2002) Appl Phys Lett 80:2159

    Article  CAS  Google Scholar 

  16. Sugihara T, Odagawa H, Cho Y (2005) Jpn J Appl Phys 44:4325

    Article  CAS  Google Scholar 

  17. Sugihara T, Cho Y (2006) Nanotechnology 17:162

    Article  Google Scholar 

  18. Cho Y, Hashimoto S, Odagawa N, Tanaka K, Hiranaga Y (2005) Appl Phys Lett 87:232907

    Article  Google Scholar 

  19. Cho Y, Hashimoto S, Odagawa N, Tanaka K, Hiranaga Y (2006) Nanotechnology 17:S137.

    Article  CAS  Google Scholar 

  20. Ohara K, Cho Y (2004) J Appl Phys 96:7460

    Article  CAS  Google Scholar 

  21. Matsuura K, Cho Y, Ramesh R (2003) Appl Phys Lett 83:2650

    Article  CAS  Google Scholar 

  22. Pulvari CF (1955) US Patent 2,698,928

    Google Scholar 

  23. Anderson JR (1952) Elect Eng 916

    Google Scholar 

  24. Crawford JC (1971) Trans IEEE ED-18:951

    Google Scholar 

  25. Tanaka H, Sato R (1969) Shingakuron 52-A:436 (in Japanese)

    Google Scholar 

  26. Niitsuma H, Sato R (1981)Ferroelectrics 34:37

    Google Scholar 

  27. Guthner P, Dransfeld K (1992) Appl Phys Lett 61:1137

    Article  Google Scholar 

  28. Hidaka T, Maruyama T, Satoh M, Mikoshiba N, Shimizu M, Shiozaki T, Wills L, Hiskes R, Dicarolis SA, Amano J (1996) Appl Phys Lett 68:2358

    Article  CAS  Google Scholar 

  29. Gruverman AL, Hatano J, Tokumoto H (1997) Jpn J Appl Phys 36:2207

    Article  CAS  Google Scholar 

  30. Eng LM, Bammerlin M, Loppacher CH, Guggisberg M, Bennewitz R, Luthi R, Meyer E, Huser TH, Heinzelmann H, Guntherodt H-J (1999) Ferroelectrics 222:153

    Article  Google Scholar 

  31. Paruch P, Tybell T, Triscone J-M (2001) Appl Phys Lett 79:530

    Article  CAS  Google Scholar 

  32. Cho Y (2003) Advances in imaging. Electron physics, vol 127. Elsevier, Amsterdam, p 1

    Google Scholar 

  33. Matsuura K, Cho Y, Odagawa H (2001) Jpn J Appl Phys 40:3534

    Article  CAS  Google Scholar 

  34. Cho Y, Kazuta S, Matsuura K (1999) Jpn J Appl Phys 38:5689

    Article  CAS  Google Scholar 

  35. Matsuura K, Cho Y, Odagawa H (2001) Jpn J Appl Phys 40:4354

    Article  CAS  Google Scholar 

  36. Cho Y, Fujimoto K, Hiranaga Y, Wagatsuma Y, Onoe A, Terabe K, Kitamura K (2002) Appl Phys Lett 81:4401

    Article  CAS  Google Scholar 

  37. Cho Y, Fujimoto K, Hiranaga Y, Wagatsuma Y, Onoe A, Terabe K, Kitamura K (2003) Nanotechnology 14:637

    Article  CAS  Google Scholar 

  38. Hiranaga Y, Cho Y, Fujimoto K, Wagatsuma Y, Onoe A (2003) Jpn J Appl Phys 42:6050

    Article  CAS  Google Scholar 

  39. Fujimoto K, Cho Y (2003) Appl Phys Lett 83:5265

    Article  CAS  Google Scholar 

  40. Hiranaga Y, Wagatsuma Y, Cho Y (2004) Jpn J Appl Phys 43:L569

    Article  CAS  Google Scholar 

  41. Hiranaga Y, Cho Y (2004) Jpn J Appl Phys 43:6632

    Article  CAS  Google Scholar 

  42. Cho Y, Odagawa H, Ohara K, Hiranaga Y (2005) IEICE Trans Electron C J88-C:1 (in Japanese)

    Google Scholar 

  43. Hiranaga Y, Cho Y (2005) Jpn J Appl Phys 44:6960

    Article  CAS  Google Scholar 

  44. Furukawa Y, Kitamura K, Suzuki E, Niwa K (1999) J Cryst Growth 197:889

    Article  CAS  Google Scholar 

  45. Kitamura K, Furukawa Y, Niwa K, Gopalan V, Mitchell TE (1998) Appl Phys Lett 73:3073

    Article  CAS  Google Scholar 

  46. Gopalan V, Mitchell TE, Sicakfus KE (1999) Solid State Commun 109:111

    Article  CAS  Google Scholar 

  47. Kim S, Gopalan V, Kitamura K, Furukawa Y (2001) J Appl Phys 90:2949

    Article  CAS  Google Scholar 

  48. Katoh M, Morita T, Cho Y (2004) Integr Ferroelectr 68:207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cho, Y. (2008). Visualization of Fixed Charges Stored in Condensed Matter and Its Application to Memory Technology. In: Bhushan, B., Tomitori, M., Fuchs, H. (eds) Applied Scanning Probe Methods X. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74085-8_3

Download citation

Publish with us

Policies and ethics