Skip to main content

Automated AFM as an Industrial Process Metrology Tool for Nanoelectronic Manufacturing

  • Chapter
Book cover Applied Scanning Probe Methods X

Part of the book series: Nano Science and Technolgy ((NANO))

  • 1149 Accesses

Abstract

Scanning probe microscope (SPM) techniques, invented 20 years ago, act as eyes for nanotechnology and nanoscience research and development, for imaging and characterizing surface topography and properties at atomic resolution. Particularly for the past decade, atomic force microscopy (AFM, one member of the SPM family) has evolved from laboratory research instrumentation to an industry metrology tool for geometric dimension control in nanoelectronic device manufacturing on production floors. This chapter gives an overview in great technical detail of state-of-the-art AFM applications in process characterization and inline monitoring for semiconductor manufacturing. Use of AFM equally applies for topography, dimension, and sidewall shape metrology in photomask and hard disk recording head processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serry FM (2005) Metrology at the micrometer and nanometer scale. OnBoard Technol Sept 38–40

    Google Scholar 

  2. Schattenburg M, Smith H (2002) Proc SPIE 4608:116–124

    Article  Google Scholar 

  3. Braun B (2006) Semicond Int, 15 June 2006, p 45

    Google Scholar 

  4. Diebold A (2005) AIP Conf Proc 788:21–32

    Article  CAS  Google Scholar 

  5. Serry FM (2006) Photonics Spectra Dec, p 123

    Google Scholar 

  6. Magonov S (2005) Proc SPIE 6002:145–153

    Google Scholar 

  7. Braun A (2002) Semicond Int, July, p 78

    Google Scholar 

  8. Foucher J, Sundaram G, Gorelikov D (2005) Proc SPIE 5752:489–498

    Article  Google Scholar 

  9. Miller K, Geiszler V, Dawson D (2004) Proc SPIE 5375:1325–1330

    Article  CAS  Google Scholar 

  10. Ukraintsev V et al (2005) Proc SPIE 5752:127–139

    Article  CAS  Google Scholar 

  11. Rice B et al (2005) AIP Conf Proc 788:379–385

    Article  Google Scholar 

  12. Bao T, Fong D (2007) In: Proceedings of the 6th international semiconductor technology conference (ISTC 2007), Shanghai, China, 18–20 March 2007, p 517

    Google Scholar 

  13. Perng B et al (2006) Proc SPIE 6152:61520Q

    Article  Google Scholar 

  14. Wu C et al (2001) Proc SPIE 4345:190–199

    Article  CAS  Google Scholar 

  15. International Technology Roadmap for Semiconductors (2005) International Technology Roadmap for Semiconductors 2005 edition. Metrology. http://www.itrs.net/Links/2005ITRS/Metrology2005.pdf

    Google Scholar 

  16. Liu H et al (2006) Proc SPIE 6152:61522Y

    Article  Google Scholar 

  17. Foucher J, Miller K (2004) Proc SPIE 5375:444–455

    Article  Google Scholar 

  18. Dixson R, Guerry A (2004) Proc SPIE 5375:633–646

    Article  Google Scholar 

  19. Ukraintsev V (2006) Proc SPIE 6152:61521G

    Article  Google Scholar 

  20. Dixson R, Orji N et al (2006) Proc SPIE 6152:61520P

    Article  Google Scholar 

  21. Dixson R et al (1999) Proc SPIE 3677:20–34

    Article  CAS  Google Scholar 

  22. Martin Y, Wickramasinghe H (1994) Appl Pys Lett 64(19):2498

    Article  CAS  Google Scholar 

  23. Liu H et al (2005) J Vac Sci Technol B 23(6)3090–3093

    Google Scholar 

  24. Cottle R (2002) Proc SPIE 4562:247- 255

    Google Scholar 

  25. Dahlen G et al (2005) J Vac Sci Technol B 23(6):2297–2303

    Article  CAS  Google Scholar 

  26. Bao T, Zerrade A (2006) Proc SPIE 6349:63493Z

    Article  Google Scholar 

  27. Dai H et al (1996) Nature 384:147–150

    Article  CAS  Google Scholar 

  28. Yenilmez E et al (2002) Appl Phys Lett 80(12):2225

    Article  CAS  Google Scholar 

  29. Larsen T, Moloni K, Flack F, Black C (2002) Appl Phys Lett 80(11):1996

    Article  CAS  Google Scholar 

  30. Lagus M, Hand S (2001) In: Proceedings of the 18th international VLSI multilevel interconnection conference, 28–29 November 2001, p 239

    Google Scholar 

  31. Bao T, Romani R, Ercole M (2006) In: Proceedings of the international conference on planarization/CMP technology (2006 ICPT), Foster City, CA, USA, 12–13 October 2006, p 165

    Google Scholar 

  32. Caldwell M, Bao T (2007) CMP-MIC (in press)

    Google Scholar 

  33. Lipscomb W, Allgair J, Bunday B et al (2006) Calibrating optical overlay Proc SPIE 6152:615211

    Article  Google Scholar 

  34. Caldwell M, Bao T et al (2007) Proc SPIE (in press)

    Google Scholar 

  35. Ozturk A, Liu J (2005) AIP Conf Proc 788:222–231

    Article  CAS  Google Scholar 

  36. Vachellerie V, Kremer S et al (2005) AIP Conf Proc 788:411–420

    Article  Google Scholar 

  37. Peters L (2006) Semicond Int, Jan, p 96

    Google Scholar 

  38. Heaton M, Ge L, Serry S (2001) Atomic force profilometry for chemical mechanical polishing metrology. In: Semiconductor FABTECH, 11th edn, p 97

    Google Scholar 

  39. Cunningham T, Todd B, Cramer J et al (2000) Solid State Technol, Jul, p 105

    Google Scholar 

  40. Strausser Y, Hetherington D (1996) Semicond Int, Dec, p 75

    Google Scholar 

  41. Prakash V et al (1999) Proc SPIE 3677:10–17

    Article  Google Scholar 

  42. Lagus M, Marsh J (1999) Proc SPIE 3677:2–9

    Article  CAS  Google Scholar 

  43. Borionetti G, Bazzali A, Orizio R (2004) Eur Phys J Appl Phys 27:101–106

    Article  CAS  Google Scholar 

  44. Walch K et al (2001) Proc SPIE 4344:726–732

    Article  Google Scholar 

  45. Patterson K et al (2001) Proc SPIE 4344:809–814

    Article  Google Scholar 

  46. Yamaguchi A et al (2004) Proc SPIE 5375:468–476

    Article  CAS  Google Scholar 

  47. Villarrubia J (2005) AIP Conf Proc 788:386–393

    Article  Google Scholar 

  48. Orji N, Raja J, Vorburger T (2002) Proc Am Soc Precis Eng, Oct, p 821

    Google Scholar 

  49. Villarrubia J, Bunday B (2005) Proc SPIE 5752:480–488

    Article  Google Scholar 

  50. Jang J et al (2003) Appl Phys Lett 83(20):4116–4118

    Article  CAS  Google Scholar 

  51. Foucher J (2005) Proc SPIE 5752:966–976

    Article  Google Scholar 

  52. Miller K et al (2004) Proc SPIE 5446:720–727

    Article  Google Scholar 

  53. PKL (1997) http://www.pkl.co.kr/english/product/product14.html

    Google Scholar 

  54. Yoshida Y et al (2004) Proc SPIE 5446:759–769

    Article  Google Scholar 

  55. Todd B et al (2001) Proc SPIE 4344:208–221

    Article  Google Scholar 

  56. Miller K et al (2002) Proc SPIE 4689:466–472

    Article  Google Scholar 

  57. Muckenhirn S, Meyyappan A (1998) Proc SPIE 3332:642–653

    Article  Google Scholar 

  58. Tanaka Y et al (2004) Proc SPIE 5446:751–758

    Article  Google Scholar 

  59. Miller K, Todd B (2001) Proc SPIE 4186:681–687

    Article  Google Scholar 

  60. Muckenhirn S, Meyyappan A et al (2001) Proc SPIE 4344:188–199

    Article  Google Scholar 

  61. Martinez J, Yuzvinsky T et al (2005) Nanotechnology 16:2493–2496

    Article  CAS  Google Scholar 

  62. Wendel M, Lorenz H, Kotthaus J (1995) Appl Phys Lett 67(25):3732–3734

    Article  CAS  Google Scholar 

  63. Schitter G et al (2005) In: Proceedings of the 2005 IEEE/ASME international conference on advanced intelligent mechatronics, Monterey, CA, USA, July 2005, pp 24- 28

    Google Scholar 

  64. Schitter G et al (2001) Rev Sci Instrum 72(8):3320–3327

    Article  CAS  Google Scholar 

  65. Bunday B et al (2005) Proc SPIE 5878:58780M

    Article  Google Scholar 

  66. Boettiger U, Li J (2006) US Patent 7,068,432, 27 June 2006.

    Google Scholar 

  67. Serry F, Nagy P, Horwitz J, Oden P, Heaton M (2002)3D MEMS metrology with the atomic force microscope. Veeco AFM applications notes. http://www.veeco.com

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bao, T., Fong, D., Hand, S. (2008). Automated AFM as an Industrial Process Metrology Tool for Nanoelectronic Manufacturing. In: Bhushan, B., Tomitori, M., Fuchs, H. (eds) Applied Scanning Probe Methods X. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74085-8_12

Download citation

Publish with us

Policies and ethics