Skip to main content

The Functional Groups of Micro-organisms Used as Bio-indicator on Soil Disturbance Caused by Biotech Products such as Bacillus thuringiensis and Bt Transgenic Plants

  • Chapter
Plant Surface Microbiology
  • 958 Accesses

Insects are usually controlled with insecticides. Of the insecticides 5 % are biological, and more than 90 % of biological insecticides are based on Bacillus thuringiensis (Bt; Sanchis 2000). The use of bio-insecticides has increased because of the growing need to obtain better quality food and to protect the environment, but very little is known about the impact these organisms have on the environment and mainly on the soil functional microorganism groups.

Due to the efficiency of bio-insecticides based on B. thuringiensis, the gene which produces the bio-insecticide crystal was introduced into plants to produce Bt-transgenic plants. Transformed tobacco using the Ti plasmodium from Agrobacterium tumefasciens was obtained in the 1980s. Later, the electroporation and bombardment or bio-ballistic of embryos method, which is more efficient for transformation of a greater number of plant species with the cry B. thuringiensis gene, was used (Peferoen 1997). The second generation of Bt-transgenic plants is presently obtained with the introduction of at least two cry genes in the plant genome, and there are already more than 20 species of transgenic plants of economic importance being used in a few countries (Sanchis 2000).

Although transgenic plants have been produced and sown for two decades, there is little information about their environmental impact. Currently proposed plant gene products will probably have less impact on soil ecosystems than some familiar and accepted practices. However, some transgenic plant products may have measurable adverse effects on soil organisms that will have to be monitored for some years after widespread introduction

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  • Addison JA (1993) Persistence and nontarget effects of Bacillus thuringiensis in soil: a review. Can J For Res 23:2329-2342

    Article  Google Scholar 

  • Amora-Lazcano E, Azcón R (1997) Response of sulphur cycling microorganisms to arbuscular mycorrhizal fungi in the rhizosphere of maize. Appl Soil Ecol 6:217-222

    Article  Google Scholar 

  • Andrade G (1999) Interacciones microbianas en la rizosfera. In: Siqueira JO, Moreira FMS, Lopes AS, Guilherme LR, Faquin V, Furtinni AE, Carvalho JG (eds) Soil fertility, soil biology and plant nutrition interrelationships. Brazilian Soil Science Society/ Federal University of Lavras/Soil Science Department (SBCS/UFLA/DCS), Lavras, Brazil, pp 551-575

    Google Scholar 

  • Andrade G, Azcón R, Bethlenfalvay GJ (1995) Mycorrhizae in sustainable agriculture 1. An agrosystem affecting rhizobacterium modifies plant soil responses to a mycor-rhizal fungus. Appl Soil Ecol 2:195-202

    Article  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizos-phere and hyphosphere soils of different arbuscular mycorrhizal fungi. Plant Soil 192;71-79

    Article  CAS  Google Scholar 

  • Arencibia A, Vázquez RI, Prieto D, Téllez P, Carmona ER, Coego A, Hernández L, Selman-Housein G, De La Riva GA (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3:247-255

    Article  Google Scholar 

  • Bethlenfalvay GJ, Andrade G, Azcón-Aguilar C (1997) Mycorrhizae in sustainable agri-culture. 2. Plant and soil microorganisms in nodulated and nitrate fertilized peas. Biol Fertil Soils 24:164-168

    Article  CAS  Google Scholar 

  • Cody RM (1989) Distribution of chitinase and chitibiose in Bacillus. Curr Microbiol 19:201-205

    Article  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Advances series in agricultural sciences, vol 15, Springer, Berlin Heidelberg New York, pp 288

    Google Scholar 

  • Donegan KK, Seidler RJ, Fieland VJ, Schaller DL, Palm CJ, Ganio LM, Cardwell DM, Stein-bergers Y (1997) Decomposition of genetically engineered tobacco under field condi-tions: persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and microarthropod populations. J Appl Ecol 34:767-777

    Article  Google Scholar 

  • Elliot Juhnke M, Mathre DE, Sands DC (1987) Identification and characterization of rhi-zosphere-competent bacteria of wheat. Appl Environ Microbiol 53:2793-2799

    Google Scholar 

  • Halverson LJ, Clayton MK, Handelsman J (1993) Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biol Biochem 25:485-493

    Article  Google Scholar 

  • Kim DS, Cook RJ, Weller DM (1997) Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87:551-558

    Article  CAS  PubMed  Google Scholar 

  • Lereclus D, Agaisse H, Grandvalet C, Salamitou S, Gominet M (2000) Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int J Med Microbiol 290:295-299

    CAS  PubMed  Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication, Madison, WI, pp 45-70

    Google Scholar 

  • Marschner P, Crowley DE (1996) Physiological activity of a bioluminescent Pseudomas fluorescens (strain 2-79) in the rhizosphere of mycorrhizal and non-mycorrhizal pep-per (Capsicum annum L. ). Soil Biol Biochem 18:191-196

    Google Scholar 

  • Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437-2442

    PubMed  CAS  Google Scholar 

  • Mazier M, Chaufaux J, Sanchis V, Lereclus D, Giband M, Tourneur J (1997) The cryIC gene from Bacillus thuringiensis provides protection against Spodoptera littoralis in young transgenic plants. Plant Sci 127:179-190

    Article  CAS  Google Scholar 

  • McBride KE, Svab Z, Schaaf D J (1995) Amplification of a chimeric gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/technology. 13:362-365

    Article  CAS  PubMed  Google Scholar 

  • Meadows MP (1993) Bacillus thuringiensis in the environment: ecology and risk assess-ment. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis an environmental biopesticide: theory and practice. Wiley, Chichester, pp 193-220

    Google Scholar 

  • Olsson S, Person P (1999) The composition of bacterial population in soil fractions dif-fering in their degree of adherence to barley roots. Appl Soil Ecol 12:205-215

    Article  Google Scholar 

  • Palm CJ, Donegan K, Harris D, Seidler RJ (1994) Quantification in soil of Bacillus thuringiensis var kurstaki d-endotoxin from transgenic plants. Mol Ecol 3:145-151

    Article  CAS  Google Scholar 

  • Palm CJ, Schaller DL, Donegan KK, Seidler RJ (1996) Persistence in soil of transgenic plant produced Bacillus thuringiensis var kurstaki d-endotoxin. Can J Microbiol 42:1258-1262

    Article  CAS  Google Scholar 

  • Paulitz TC, Linderman RG (1989) Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol 113:37-45

    Article  Google Scholar 

  • Pedersen JC, Damgaard PH, Eilenberg J, Hansen BM (1995) Dispersal of Bacillus thuringiensis var. kurstaki in an experimental cabbage field. Can J Microbiol 41:118-125

    Article  CAS  Google Scholar 

  • Peferoen M (1997) Progress and prospects for field use of Bt genes in crops. Trends Biotechnol 15:173-177

    Article  CAS  Google Scholar 

  • Petras SF, Casida Jr LE (1985) Survival of Bacillus thuringiensis spores in soil. Appl Env-iron Microbiol 50:1496-1501

    CAS  Google Scholar 

  • Pruett CJH, Burges HD, Wyborn CH (1980) Effect of exposure to soil on potency and spore viability of Bacillus thuringiensis. J Invert Pathol 35:168-174

    Article  Google Scholar 

  • Reddy MS, Rhae JE (1989) Bacillus subtilis B-2 and selected onion rhizobacteria in onion seedling rhizospheres: effects on seedling growth and indigenous rhizosphere microflora. Soil Biol Biochem 21:379-383

    Article  Google Scholar 

  • Sanchis V (2000) Biotechnological improvement of Bacillus thuringiensis for agricul-tural control of insect pests: benefits and ecological implications. In: Charles JF, Delecluse A, Nielsen-Leroux C (eds) Entomophatogenic bacteria: from laboratory to field application. Kluwer Academic, Berlin

    Google Scholar 

  • Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol 33:35-39

    Article  CAS  PubMed  Google Scholar 

  • Saxena D, Flores S, Stotzky G (1999) Transgenic plants; insecticidal toxin in root exudates from Bt corn. Nature 402:480

    CAS  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775-780

    CAS  PubMed  Google Scholar 

  • Schwab SM, Menge JA, Leonard RT (1983) Quantitative and qualitative effects of phos-phorus on extracts and exudates of sundangrass roots in relation to vesicular-arbus-cular mycorrhiza formation. Plant Physiol 73:761-765

    Article  CAS  PubMed  Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Microbiol 33:1067-1073

    Article  Google Scholar 

  • Sims SR, Holden LR (1996) Insect bioassay for determining soil degradation of Bacillus thuringiensis subsp. kurstaki CryIA(b) protein in corn tissue. Environ Entomol 25: 659-664

    Google Scholar 

  • Sims SR, Ream JE (1997) Soil inactivation of the Bacillus thuringiensis subsp. kurstaki CryIIA insecticidal protein within transgenic cotton tissue: laboratory microcosm and field studies. J Agric Food Chem 45:1502-1505

    Article  CAS  Google Scholar 

  • Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau G, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cryIA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transg Res 6:169-176

    Article  CAS  Google Scholar 

  • Smith RA, Couche GA (1991) The philloplane as a source of Bacillus thuringiensis vari-ants. Appl Environ Microbiol 57:311-331

    PubMed  CAS  Google Scholar 

  • Tapp H, Stotzky G (1995a) Insecticidal activity of the toxins from Bacillus thuringiensis subspecies kurstaki and tenebrionis adsorbed and bound on pure and soil clays. Appl Environ Microbiol 61:1786-1790

    CAS  PubMed  Google Scholar 

  • Tapp H, Stotzky G (1995b) Dot blot enzyme-linked immunosorbent assay for monitor-ing the fate of insecticidal toxins from Bacillus thuringiensis in soil. Appl Environ Microbiol 61:602-609

    CAS  PubMed  Google Scholar 

  • Thomas DJI, Alun J, Morgan W, Whipps JM, Saunders JR (2000) Plasmid transfer between the Bacillus thuringiensis subspecies kurstaki and tenebrionis in laboratory culture and soil and in Lepidopteran and Coleopteran larvae. Appl Environ Microbiol 118-124

    Google Scholar 

  • Tomlin AD (1994) Transgenic plant release: comments on the comparative effects of agriculture and foresty practices on soil fauna. Mol Biol 3:51-52

    Google Scholar 

  • Villas-Bôas LA, Villas-Bôas GFLT, Saridakis HO, Lemos MVF, Lereclus D, Arantes OMN (2000) Survival and conjugation of Bacillus thuringiensis in a soil microcosm. FEMS Microbiol Ecol 31:255-259

    Google Scholar 

  • West AW, Burges HD, Dixon TJ, Wyborn CH (1985) Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: effects of pH, moisture, nutrient availability and indigenous microorganisms. Soil Biol Biochem 17:657-665

    Article  Google Scholar 

  • Young CS, Lethbridge G, Shaw LJ, Burns RG (1995) Survival of inoculated Bacillus cereus spores and vegetative cells in non-planted and rhizosphere soil. Soil Biol Biochem 27:1017-1026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrade, G. (2008). The Functional Groups of Micro-organisms Used as Bio-indicator on Soil Disturbance Caused by Biotech Products such as Bacillus thuringiensis and Bt Transgenic Plants. In: Varma, A., Abbott, L., Werner, D., Hampp, R. (eds) Plant Surface Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74051-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74051-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74050-6

  • Online ISBN: 978-3-540-74051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics