Skip to main content

Carbohydrates and Nitrogen: Nutrients and Signals in Ectomycorrhizas

  • Chapter

Due to plant litter, forest soil is rich in complex carbohydrates (e.g., cellulose and lignin). Nevertheless, these carbohydrates are only slowly degraded by specialized microorganisms and thus forest soils are rather poor in readily cleavable carbohydrates that are necessary for the growth of the majority of microbes including ectomycorrhizal fungi.

Basidiomycetes are able to transfer nutrients and metabolites over long distances. Exploring a rich source of readily utilizable carbohydrates would thus favor the colonization of other soil areas, too. The association with fine roots of woody plants forming ectomycorrhizas is a way that secures exclusive access to such a rich carbohydrate source for ectomycorrhizal fungi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ecto-mycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481-493

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1988) Amino acids as nitrogen sources for ectomycorrhizal fungi: utilisation of individual amino acids. Transact Br Mycol Soc 91:473-479

    Article  CAS  Google Scholar 

  • Bajwa R, Abuarghub S, Read DJ (1985) The biology of mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycor-rhizal endophyte and by mycorrhizal plants. New Phytol 101:469-486

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol BioChem 28:1603-1612

    Article  CAS  Google Scholar 

  • Berg MP, Kniese JP, Verhoef HA (1998) Dynamics and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil. Biol Fertil Soils 26:313-322

    Article  Google Scholar 

  • Berredjem A, Garnier A, Putra DP, Botton B (1998) Effect of nitrogen and carbon sources on growth and activities of NAD and NADP dependent isocitrate dehydrogenases of Laccaria bicolor. Mycol Res 4:427-434

    Article  Google Scholar 

  • Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ectomycorrhizal symbiosis. New Phytol 134:685-695

    Article  Google Scholar 

  • Cao W, Crawford DL (1993) Carbon nutrition and hydrolytic and cellulolytic activities in the ectomycorrhizal fungus Pisolithus tinctorius. Can J Microbiol 39:529-535

    Article  CAS  Google Scholar 

  • Celenza JL, Marshall-Carlson L, Carlson M (1988) The yeast SNF3 gene encodes a glu-cose transporter homologous to the mammalian protein. Proc Natl Acad Sci USA 85:2130-2134

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty P, Unestam T (1987) Differential influence of ectomycorrhizae on plant growth and disease resistance of Pinus sylvestris seedlings. J Phytopathol 120:104-120

    Article  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21-44

    Article  CAS  PubMed  Google Scholar 

  • Chalot M, Kytöviita MM, Brun A, Finlay RD, Söderström B (1995) Factors affecting amino acid uptake by the ectomycorrhizal fungus Paxillus involutus. Mycol Res 99:1131-1138

    Article  CAS  Google Scholar 

  • Chalot M, Brun A, Botton B, Soderstrom B (1996) Kinetics, energetics and specificity of a general amino acid transporter from the ectomycorrhizal fungus Paxillus involutus. Microbiol 142:1749-1756

    Article  CAS  Google Scholar 

  • Chen XY, Hampp R (1993) Sugar uptake by protoplasts of the ectomycorrhizal fungus, Amanita muscaria (L. ex fr. ) Hooker. New Phytol 125:601-608

    Article  CAS  Google Scholar 

  • Coruzzi GM, Zhou L (2001) Carbon and nitrogen sensing and signaling in plants: emerg-ing ‘matrix effects’. Curr Opin Plant Biol 4:247-253

    Article  CAS  PubMed  Google Scholar 

  • d’Enfert C (1997) Fungal spore germination: insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genet Biol 21:163-172

    Article  Google Scholar 

  • El-Badaoui K, Botton B (1989) Production and characterization of exocellular proteases in ectomycorrhizal fungi. Annales des Sciences Foréstières 46:728-730

    Article  Google Scholar 

  • Elbein A (1974) The metabolism of a, a-trehalose. Adv Carb Chem BioChem 30:227-256

    Article  CAS  Google Scholar 

  • Felenbok B, Kelley JM (1996) Regulation of carbon metabolism in mycelial fungi. In: Brambl R, Marzluf GA (eds) The Mycota III. Biochemistry and molecular biology. Springer, Berlin Heidelberg New York, pp 369-380

    Google Scholar 

  • Finlay R, Ek H, Odham G, Söderström B (1988) Mycelial uptake, translocation and assim-ilation of nitrogen from 15N labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110:59-66

    Article  Google Scholar 

  • Finlay RD, Frostegärd Ä, Sonnerfeldt A-M (1992) Utilisation of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120:105-111

    Article  Google Scholar 

  • Fletcher M (1996) Bacterial adhesion: Molecular and ecological diversity. Wiley-Liss, New York

    Google Scholar 

  • France RC, Reid CPP (1983) Interactions of nitrogen and carbon in the physiology of ectomycorrhizas. Can J Bot 61:964-984

    Article  CAS  Google Scholar 

  • France RC, Reid CPP (1984) Pure culture growth of ectomycorrhizal fungi on inorganic nitrogen sources. Microbiol Ecol 10:187-195

    Article  Google Scholar 

  • Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47: 370-375

    Article  Google Scholar 

  • Genet P, Prevost A, Pargney JC (2000) Seasonal variations of symbiotic ultrastructure and relationships of two natural ectomycorrhizae of beech (Fagus sylvatica/Lactarius blennius var. viridis and Fagus sylvatica/Lactarius subdulcis). Trees 14:465-474

    Article  Google Scholar 

  • Gessler A, Schneider S, von Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvat-ica) trees. New Phytol 138:275-285

    Article  CAS  Google Scholar 

  • Gonzalez R, Gavrias V, Gomez D, Scazzocchio C, Cubero B (1997) The integration of nitrogen and carbon catabolite repression in Aspergillus nidulans requires the GATA factor AreA and an additional positive-acting element, ADA. EMBO J 16:2937-2944

    Article  CAS  Google Scholar 

  • Grenson M (1973) Specificity and regulation of the uptake and retention of amino acids and pyrimidines in yeast. In: Vanek Z, Hostalek Z, Culdin J (eds) Genetics of indus-trial microorganisms. Academica, Prague, pp 179-193

    Google Scholar 

  • Hampp R, Schaeffer C (1999) Mycorrhiza-carbohydrate and energy metabolism. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 273-303

    Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Degradation of carbon-14 labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352-354

    Article  CAS  Google Scholar 

  • Hoffmann E, Wallenda T, Schaeffer C, Hampp R (1997) Cyclic AMP, a possible regulator of glycolysis in the ectomycorrhizal fungus Amanita muscaria. New Phytol 137:351-356

    Article  CAS  Google Scholar 

  • Javelle A, Chalot M, Soderstrom B, Botton B (1999) Ammonium and methylamine trans-port by the ectomycorrhizal fungus Paxillus involutus and ectomycorrhizas. FEMS Microbiol Ecol 30:355-366

    Article  CAS  PubMed  Google Scholar 

  • Javelle A, Rodriguez-Pastrana BR, Jacob C, Botton B, Brun A, Andre B, Marini AM, Chalot M (2001) Molecular characterization of two ammonium transporters from the ecto-mycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett 505:393-398

    Article  CAS  PubMed  Google Scholar 

  • Jennings DJ (1995) The physiology of fungal nutrition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Johansson A, Le Quéré A, Ahrén D, Lundeberg J, Erlandsson R, Uhlèn M, Söderström B, Tulind A (2000) Transcript profiling during ectomycorrhizal development. In: Transcript profiling during ectomycorrhizal development. Philipps University of Marburg, Marburg, pp 95

    Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting: glucose sensing in yeast and other cells. TIGS 15:29-33

    CAS  Google Scholar 

  • Jordy MN, AzemarLorentz S, Brun A, Botton B, Pargney JC (1998) Cytolocalization of glycogen, starch, and other insoluble polysaccharides during ontogeny of Paxillus involutus-Betula pendula ectomycorrhizas. New Phytol 140:331-341

    Article  CAS  Google Scholar 

  • Keeney DR (1980) Prediction of soil nitrogen availability in forest ecosystems: a litera-ture review. For Sci 26:159-171

    Google Scholar 

  • Kowallik W, Thiemann M, Huang Y, Mutumba G, Beermann L, Broer D, Grotjohann N (1998) Complete sequence of glycolytic enzymes in the mycorrhizal basidiomycete, Suillus bovinus. Z Naturforsch 53:818-827

    CAS  Google Scholar 

  • Leake JR, Read DJ (1990) Proteinase activity in mycorrhizal fungi. I. The effect of extra-cellular pH on the production and activity of proteinase by ericoid endophytes from soil of contrasted pH. New Phytol 115:243-250

    Article  CAS  Google Scholar 

  • Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol 21:71-82

    CAS  PubMed  Google Scholar 

  • Lesage P, Yang X, Carlson M (1996) Yeast SNF1 protein kinase interacts with SIP4, a C6 zink cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol Cell Biol 16:1921-1928

    CAS  PubMed  Google Scholar 

  • Lewis DH, Harley JL (1965) Carbohydrate physiology of mycorrhizal roots of beech. I. Identity of endogenous sugars and utilization of exogenous sugars. New Phytol 64:224-237

    Article  CAS  Google Scholar 

  • Littke WR, Bledsoe CS, Edmonds RL (1984) Nitrogen uptake and growth in vitro by Hebeloma crustuliniforme and other Pacific Northwest mycorrhizal fungi. Can J Bot 62:647-652

    Article  CAS  Google Scholar 

  • Madi L, McBridge SA, Bailey LA, Ebbole DJ (1997) Rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genet 146:499-508

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of plants. 2nd edn. Academic Press, London

    Google Scholar 

  • Martin F, Canet D, Marchal JP (1985) C nuclear magnetic resonance study of mannitol cycle and trehalose synthesis during glucose utilization by the ectomycorrhizal ascomycete Cenococcum geophilum. Plant Physiol 77:499-502

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Ramstedt M, Söderhall K (1987) Carbon and nitrogen metabolism in ectomyc-orrhizal fungi and ectomycorrhizas. Biochimie 69:569-581

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Ramstedt M, Söderhall K, Canet D (1988) Carbohydrate and amino acid metab-olism in the ectomycorrhizal ascomycete Sphaerosporella brunnea during glucose utilization a 13C NMR study. Plant Physiol 86:935-940

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Chalot M, Brun A, Lorillou S, Botton B, Dell B (1992) Spatial distribution of nitrogen assimilation pathways in ectomycorrhizas. In: Read DJ, Lewis DH, Fitter A, Alexander I (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 311-315

    Google Scholar 

  • Martin F, Boiffin VV, Pfeffer PE (1998) Carbohydrate and amino acid metabolism in the Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza during glucose utilization. Plant Physiol 118:627-635

    Article  CAS  PubMed  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic ectomycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to pathogenic fungi and soil bacteria. Phytopathology 59:153-163

    Google Scholar 

  • Melin E, Nilsson H (1952) Transport of labelled nitrogen from an ammonium source to pine seedlings through mycorrhizal mycelium. Svensk Bot Tidskr 46:281-285

    CAS  Google Scholar 

  • Mellor R (1992) Is trehalose a symbiotic determinant in symbioses between higher plants and microorganisms? Symbiosis 12:113-129

    CAS  Google Scholar 

  • Montanini B, Moretto N, Soragni E, Percudani R, Ottonello S (2002) A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol 36:22-34

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Xie ZP, Staehelin C, Mellor RB, Boller T, Wiemken A (1994) Trehalose and tre-halase in root nodules from various legumes. Physiolog Plant 90:86-92

    Article  Google Scholar 

  • Nasholm T, Persson J (2001) Plant acquisition of organic nitrogen in boreal forests. Phys-iol Plant 111:419-426

    Article  CAS  Google Scholar 

  • Nehls U, Wiese J, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycor-rhizas: identification and expression analysis of an Amanita muscaria monosaccha-ride transporter. Mol Plant Microbiol Interact 11:167-176

    Article  CAS  Google Scholar 

  • Nehls U, Ecke M, Hampp R (1999a) Sugar- and nitrogen-dependent regulation of an Amanita muscaria phenylalanine ammonium lyase gene. J Bacteriol 181:1931-1933

    CAS  PubMed  Google Scholar 

  • Nehls U, Kleber R, Wiese J, Hampp R (1999b) Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phy-tol 144:343-349

    Article  CAS  Google Scholar 

  • Nehls U, Bock A, Ecke M, Hampp R (2001a) Differential expression of hexose-regulated fungal genes within Amanita muscaria/Populus tremula x tremuloides ectomycor-rhizas. New Phytol 150:583-589

    Article  CAS  Google Scholar 

  • Nehls U, Bock A, Einig W, Hampp R (2001b) Excretion of two proteases by the ectomyc-orrhizal fungus Amanita muscaria. Plant Cell Environ 24:741-747

    Article  CAS  Google Scholar 

  • Nehls U, Mikolajewski S, Magel E, Hampp R (2001c) The role of carbohydrates in ecto-mycorrhizal functioning: gene expression and metabolic control. New Phytol 150:533-541

    Article  CAS  Google Scholar 

  • Norkrans B (1950) Studies in growth and cellolytic enzymes of Tricholoma. Symb Bot Upsal 11:1-126

    Google Scholar 

  • Özcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554-569

    PubMed  Google Scholar 

  • Özcan S, Dover J, Rosenwald AG, Woelfl S, Johnston M (1996) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93:12428-12432

    Article  PubMed  Google Scholar 

  • Palmer JG, Hacskaylo E (1970) Ectomycorrhizal fungi in pure culture. I. Growth on sin-gle carbon sources. Physiol Plant 23:1187-1197

    CAS  Google Scholar 

  • Plassard C, Scheromm P, Llamas H (1986) Nitrate assimilation by maritime pine and ectomycorrhizal fungi in pure culture. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 383-388

    Google Scholar 

  • RadisBaptista G, Valdivia DNU, AbrahaoNeto J (1998) Fructose 2, 6-bisphosphate biosyn-thesis and regulation of carbohydrate metabolism in Aspergillus oryzae. Can J Micro-biol 44:6-11

    Article  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376-391

    Article  Google Scholar 

  • Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12-17

    Article  CAS  PubMed  Google Scholar 

  • Salzer P, Hager A (1991) Sucrose utilization of the ectomycorrhizal fungi Amanita mus-caria and Hebeloma crustuliniforme depends on the cell wall-bound invertase activ-ity of their host Picea abies. Bot Acta 104:439-445

    CAS  Google Scholar 

  • Sarjala T (1990) Effect of nitrate and ammonium concentration on nitrate reductase activity in five species of mycorrhizal fungi. Physiolog Plant 79:65-70

    Article  CAS  Google Scholar 

  • Schaeffer C, Wallenda T, Guttenberger M, Hampp R (1995) Acid invertase in mycorrhizal and non-mycorrhizal roots of Norway spruce (Picea abies [L. ] Karst. ) seedlings. New Phytol 129:417-424

    Article  CAS  Google Scholar 

  • Schaeffer C, Johann P, Nehls U, Hampp R (1996) Evidence for an up-regulation of the host and a down-regulation of the fungal phosphofructokinase activity in ectomyc-orrhizas of Norway spruce and fly agaric. New Phytol 134:697-702

    Article  CAS  Google Scholar 

  • Scheller E (1996) Aminosäuregehalte von Ap- und Ah-Horizonten verschiedener Böden und deren Huminsäuren- und Fulvosäuren-Fraktion. Mitt Dtsch Bodenkd Ges 81:201-204

    Google Scholar 

  • Scheromm PS, Plassard C, Salsac L (1990) Regulation of nitrate reductase in the ectomy-corrhizal basidiomycete, Hebeloma cylindrosporum Romagn. , cultured on nitrate or ammonium. New Phytol 114:441-448

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Sophianopoulou V, Diallinas G (1995) Amino acid transporters of lower eukaryotes: reg-ulation, structure and topogenesis. FEMS Microbiol Rev 16:53-75

    Article  CAS  PubMed  Google Scholar 

  • Spägele S (1992) Charakterisierung der intra- und extrazellulären Proteasenaktivitäten des Fliegenpilzes (Amanita muscaria [L. ex Fr. ] Hooker). Eberhard-Karls-Universität, Tübingen

    Google Scholar 

  • Springael JY, Andre B (1998) Nitrogen-regulated ubiquitination of the Gapl permease of Saccharomyces cerevisiae. Mol Biol Cell 9:1253-1263

    CAS  PubMed  Google Scholar 

  • Stülten C, Kong FX, Hampp R (1995) Isolation and regeneration of protoplasts from the ectomycorrhizal ascomycete Cenococcum geophilum Fr. Mycorrhiza 5:259-266

    Google Scholar 

  • Taber WA, Taber RA (1987) Carbon nutrition and respiration of Pisolithus tinctorius. Transact Brit Mycol Soc 89:13-26

    Article  CAS  Google Scholar 

  • Tagu D, Martin F (1995) Expressed sequence tags of randomly selected cDNA clones from Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza. Mol Plant Microbiol Interact 8:781-783

    CAS  Google Scholar 

  • Tagu D, Lapeyrie F, Ditengou F, Lagrangem H, Laurent P, Missoum N, Nehls U, Martin F (2000) Molecular aspects of ectomycorrhiza development. In: Poldila G, Douds Jr DD (eds) Current advances in mycorrhizal research. Am Phytopathol Soc, pp 69-90

    Google Scholar 

  • Tazebay UH, Sophianopoulou V, Scazzocchio C, Diallinas G (1997) The gene encoding the major proline transporter of Aspergillus nidulans is upregulated during coni-diospore germination and in response to proline induction and amino acid starva-tion. Mol Microbiol 24:105-117

    Article  CAS  PubMed  Google Scholar 

  • Ter Schure EG, Sillje HHW, Vermeulen EE, Kalhorn JW, Verkleij AJ, Boonstra J, Verrips CT (1998) Repression of nitrogen catabolic genes by ammonia and glutamine in nitro-gen-limited continuous cultures of Saccharomyces cerevisiae. Microbiol Reading 144:1451-1462

    CAS  Google Scholar 

  • Ter Schure EG, van Riel NA, Verrips CT (2000) The role of ammonia metabolism in nitro-gen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67-83

    Article  CAS  PubMed  Google Scholar 

  • Thevelein JM (1991) Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5:1302-1307

    Article  Google Scholar 

  • Timonen S, Sen R (1998) Heterogeneity of fungal and plant enzyme expression in intact Scots pine-Suillus bovinus and -Paxillus involutus mycorrhizospheres developed in natural forest humus. New Phytol 138:355-366

    Article  Google Scholar 

  • Trojanowski J, Haider K, Huttermann A (1984) Decomposition of 14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139:202-206

    Article  CAS  Google Scholar 

  • Voiblet C, Duplessis S, Encelot N, Martin F (2001) Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25:181-191

    Article  CAS  PubMed  Google Scholar 

  • Wagner F, Gay G, Debaud JC (1989) Genetic variation of nitrate reductase activity in monokaryotic and dikaryotic populations of the ectomycorrhizal fungus, Hebeloma cylindrosporum Romagnesi. New Phytol 113:259-264

    Article  CAS  Google Scholar 

  • Wallenda T (1996) Untersuchungen zur Physiologie der Pilzpartner von Ektomykor-rhizen der Fichte (Picea abies [L. ] Karst. ). Eberhard-Karls-Universität, Tübingen

    Google Scholar 

  • Wallenda T, Read DJ (1999) Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell Environ 22:179-187

    Article  CAS  Google Scholar 

  • Wiese J, Kleber R, Hampp R, Nehls U (2000) Functional characterization of the Amanita muscaria monosaccharide transporter AmMst1. Plant Biol 2:1-5

    Article  Google Scholar 

  • Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119-124

    Article  CAS  PubMed  Google Scholar 

  • Wipf D, Benjdia M, Rikirsch E, Zimmermann S, Tegeder M, Frommer WB (2003) An expression cDNA library for suppression cloning in yeast mutants, complementation of a yeast his4 mutant, and EST analysis from the symbiotic basidiomycete Hebeloma cylindrosporum. Genome 46(2):177-181

    Article  CAS  PubMed  Google Scholar 

  • Wisser G (2000) Isolation und Charakterisierung von Trehalasen aus Amanita muscaria [L. ex Fr. ] Hooker, einem Ektomykorrhizapilz. PhD-thesis, Eberhard-Karls-Universi-taet Tuebingen, Germany

    Google Scholar 

  • Wisser G, Guttenberger M, Hampp R, Nehls U (2000) Identification and characterization of an extracellular acid trehalase from the ectomycorrhizal fungus Amanita mus-caria. New Phytol 146:169-175

    Article  CAS  Google Scholar 

  • Zhu H (1990) Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus Hebeloma crustuliniforme. Appl Environ Microbiol 56:837-843

    CAS  PubMed  Google Scholar 

  • Zhu H, Dancik BP, Higginbotham KO (1994) Regulation of extracellular proteinase pro-duction in an ectomycorrhizal fungus Hebeloma crustuliniforme. Mycologia 86:227-234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nehls, U. (2008). Carbohydrates and Nitrogen: Nutrients and Signals in Ectomycorrhizas. In: Varma, A., Abbott, L., Werner, D., Hampp, R. (eds) Plant Surface Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74051-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74051-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74050-6

  • Online ISBN: 978-3-540-74051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics