Skip to main content

Functional Diversity of Arbuscular Mycorrhizal Fungi on Root Surfaces

  • Chapter
Plant Surface Microbiology

AM fungi occur in soil and in association with roots as communities of organisms that may simultaneously interact with the roots of one or several co-existing plant species. Species of AM fungi differ in their mode of colonisation and their capacity to form hyphae in soil and within the root (Abbott et al. 1992).

Although hyphal characteristics may be distinctive for some fungi (Dodd et al. 2000), they are not usually present as discrete organisms and are difficult to distinguish from one another within and on the surface of roots. Although the fungi may have markedly different characteristics, they appear to function in a similar manner, but with different levels of efficiency depending on their abundance as well as their intrinsic characteristics.Furthermore, their symbiotic response depends on environmental conditions and the relative abundance of other AM fungi associated with the roots of the same plant.

The purpose of this review is to discuss the functional diversity of AM fungi and its significance in the context of interactions at root surfaces and the potential consequences of this for plant growth and plant community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  • Abbott LK, Robson AD (1984) The effect of root density, inoculum placement and infec-tivity of inoculum on the development of vesicular-arbuscular mycorrhizas. New Phytol 97:285-299

    Google Scholar 

  • Abbott LK, Robson AD (1985) Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol 99:245-255

    Google Scholar 

  • Abbott LK, Gazey C (1994) An ecological view of the formation of VA mycorrhizas. Plant Soil 159:69-78

    Google Scholar 

  • Abbott LK, Robson AD, Jasper DA, Gazey C (1992) What is the role of VA mycorrhizal hyphae in soil? In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 37-41

    Google Scholar 

  • Balaji B, Ba AM, LaRue TA, Tepfer D, Piche Y (1994) Pisum sativum mutants insensitive to nodulation are also insensitive to invasion in vitro by the mycorrhizal fungus Gigaspora margarita. Plant Sci 102:195-203

    Google Scholar 

  • Becard G, Pfeffer PE (1993) State of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 194:62-68

    Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Pakovsky RS (1982) Relationships between host and endo-phyte development in mycorrhizal soybeans. New Phytol 90:537-543

    Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. BioSci 51:923-931

    Google Scholar 

  • Bonfante-Fasolo P (1987) Vesicular arbuscular mycorrhizae: fungus-plant interactions at the cellular level. Symbiosis 3:249-268

    Google Scholar 

  • Bonfante P, Genre A, Faccio A, Martin I, Schauser L, Stougaard J, Web J, Parniske M (2000) The Lotus japonicus Ljsym4 gene is required for the successful symbiotic infection of root epidermis cells. Mol Plant-Microbe Interact 13:1109-1120

    CAS  PubMed  Google Scholar 

  • Brundrett MC, Abbott LK (2002) Arbuscular mycorrhizas in plant communities. In: Siv-asithamparam K, Dixon KW, Barrett RL (eds) Microorganisms in Plant Conservation and Biodiversity. Kluwer, Dordrecht, pp 151-193

    Google Scholar 

  • Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycor-rhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593-1601

    CAS  PubMed  Google Scholar 

  • Capaccio LCM, Callow JA (1982) The enzymes of polyphosphate metabolism in vesicu-lar-arbuscular mycorrhizas. New Phytol 91:81-91

    CAS  Google Scholar 

  • Chiou TJ, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate trans-port at the root/soil interface. Plant J 25:281-293

    CAS  PubMed  Google Scholar 

  • Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular-arbus-cular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327-339

    CAS  Google Scholar 

  • Daft MJ (1983) The influence of mixed inocula on endomycorrhizal development. Plant Soil 71:331-337

    Google Scholar 

  • Daft MJ, Hogart BG (1983) Competitive interactions amongst four species of Glomus on maize and onion. Trans Br Mycol Soc 80:339-345

    Google Scholar 

  • Degens BP (1997) Macroaggregation of soils by biological bonding and binding mecha-nisms and factors affecting this: a review. Aust J Soil Res 35:431-446

    Google Scholar 

  • Dodd JC, Jeffries P (1989) Effects of herbicides on three vesicular-arbuscular mycor-rhizal fungi associated with winter wheat (Triticum aestivum L.). Biol Fertil Soils 7:113-119

    CAS  Google Scholar 

  • Dodd JC, Boddington CL, Rodriguez A, Gonzalez-Chavez C, Mansur I (2000) Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant Soil 226:131-151

    CAS  Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-myc-orrhizal plant mutants (myc-) obtained in pea (Pisum sativum L. ) and faba bean (Vicia faba L. ). Plant Sci 60:215-222

    Google Scholar 

  • Elias KS, Safir GR (1987) Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl Environ Microbiol 53:1928-1933

    PubMed  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2001) Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytol 149:555-563

    CAS  Google Scholar 

  • Franke-Snyder M, Douds Jr DD, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35-48

    Google Scholar 

  • Gao L-L, Delp G, Smith SE (2001) Colonization patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytol 151: 477-491

    Google Scholar 

  • Garriock ML, Peterson RL, Ackerley CA (1989) Early stages in colonization of Allium porrum (leek) roots by the vesicular-arbuscular mycorrhizal fungus, Glomus versi-forme. New Phytol 112:85-92

    Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Dexheimer J (1979) Enzyme studies on the metabo-lism of vesicular-arbuscular mycorrhiza. 3. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. and Gerd. ). New Phytol 82:127-132

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinzzi S (1989) Cellular and genetical aspects of interactions between host and fungal symbionts in mycorrhizae. Genome 31:336-341

    Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S, Guillemin JP, Trouvelot A, Duc G (1991) Genetic and cellular analysis of resistance of vesicular-arbuscular mycorrhizal fungi in pea mutants. In: Hennecke, H, Varma DPS (eds) Advances in molecular genetics of plant - microbe interactions. Kluwer, Dordrecht, pp 336-342

    Google Scholar 

  • Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705-715

    Google Scholar 

  • Giovannetti M, Sbrana S, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703-709

    Google Scholar 

  • Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycor-rhiza 8:123-130

    Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993a) Differential hyphal mor-phogenesis in arbuscular mycorrhizal fungi during preinfection stages. New Phytol 125:587-593

    Google Scholar 

  • Giovanetti M, Avio L, Sbrana L, Citernesi AS (1993b) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd. ) Gerd. and Trape. New Phytol 123:114-122

    Google Scholar 

  • Graham JH, Eissenstat DM (1998) Field evidence for the carbon cost of citrus mycor-rhizas. New Phytol 140:103-110

    Google Scholar 

  • Graham JH, Abbott LK (2000) Wheat responses to aggressive and non-aggressive arbus-cular mycorrhizal fungi. Plant Soil 220:207-218

    CAS  Google Scholar 

  • Hamel C, Fyles H, Smith DL (1990) Measurement of development of endomycorrhizal mycelium using three different vital stains. New Phytol 115:297-302

    Google Scholar 

  • Harrison MJ (1996) A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant J 9:491-503

    CAS  PubMed  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal sym-biosis. Ann Rev Plant Physiol Plant Mol Biol 50:361-389

    CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fun-gus Glomus versiforme. Nature 378:626-629

    CAS  PubMed  Google Scholar 

  • Holliday P (1989) A dictionary of plant pathology. Cambridge University Press, Cam-bridge, pp 369

    Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species on changing land-scapes. Cambridge University Press, Cambridge, pp 1-681

    Google Scholar 

  • Jabaji-Hare SH, Therien J, Charest PM (1990) High resolution cytochemical study of the vesicular-arbuscular mycorrhizal association, Glomus clarum-Allium porrum. New Phytol 114:481-496

    Google Scholar 

  • Jakobsen I (1998) Transport of phosphorus and carbon in arbuscular mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 305-332

    Google Scholar 

  • Jakobsen I, Gazey C, Abbott LK (2001) Phosphate transport by communities of arbuscu-lar mycorrhizal fungi in intact soil cores. New Phytol 149:95-103

    CAS  Google Scholar 

  • Jacquot E, van Tuinen D, Gianinazzi S, Gianinazzi-Pearson V (2000) Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant Soil 226:179-188

    CAS  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1993) The survival of infective hyphae of vesicular-arbuscular mycorrhizal fungi in dry soil: an interaction with sporulation. New Phytol 124:473-479

    Google Scholar 

  • Jiang Q, Gresshoff PM (1997) Classical and molecular genetics of the model legume Lotus japonicus. Mol Plant-Microbe Interact 10:59-68

    CAS  PubMed  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575-585

    Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasive-ness in communities. Nature 417:67-70

    CAS  PubMed  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycor-rhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137-141

    Google Scholar 

  • Koide R, Elliott G (1989) Cost, benefit and efficiency of the vesicular-arbuscular mycor-rhizal symbiosis. Funct Ecol 3:252-255

    Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal sym-biosis. Ann Rev Plant Physiol Plant Mol Biol 43:557-581

    CAS  Google Scholar 

  • Koske RE, Gemma JN (1992) Fungal reactions to plants prior to mycorrhiza formation. In: Allen MF (ed) Mycorrhizal functioning. Routledge, Chapman and Hall, New York, pp. 3-36

    Google Scholar 

  • Lie TA, Timmermans PCJM (1983) Host-genetic control of nitrogen fixation in the legume-Rhizobium symbiosis: complication in the genetic analysis due to material effects. Plant Soil 75:449-453

    Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonisation by arbuscular mycorrhizal (AM) fungi. Mol PlantMicrobe Interact 11:14-22

    CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in respect to phosphate in the environment. Mol Plant-Microbe Interact 4:1140-1148

    Google Scholar 

  • Marsh JF, Schultze M (2001) Analysis of arbuscular mycorrhizas using symbiosis-defec-tive plant mutants. New Phytol 150:525-532

    Google Scholar 

  • McArthur DAJ, Knowels NR (1993) Influence of vesicular-arbuscular mycorrhizal fungi on the response of potato to phosphorus deficiency. Plant Physiol 101:147-160

    CAS  PubMed  Google Scholar 

  • McGee PA, Smith SE (1990) Activity of succinate dehydrogenase in vesicular-arbuscular mycorrhizal fungi after enzymic digestion from roots of Allium porrum. Mycol Res 94:305-308

    CAS  Google Scholar 

  • McGonigle T, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120-122

    Google Scholar 

  • Merryweather JW, Fitter AH (1998a) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta-I. Diversity of fungal taxa. New Phytol 138:117-129

    Google Scholar 

  • Merryweather JW, Fitter AH (1998b) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta-II. Seasonal and spatial patterns of fungal populations. New Phytol 138:131-142

    Google Scholar 

  • Morton JB, Bentivenga SP (1994) Levels of diversity in endomycorrhizal fungi (Gloma-les, Zygomycetes) and their role in defining taxonomic and non-taxonomic groups. Plant Soil 159:47-59

    Google Scholar 

  • Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gener Microbiol 27:509-520

    CAS  Google Scholar 

  • Mosse B (1975) Specificity in VA mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 469-484

    Google Scholar 

  • Mosse B (1988) Some studies relating to “independent growth of vesicular-arbuscular endophytes”. Can J Bot 66:2533-2540

    Google Scholar 

  • Murphy PJ, Langridge P, Smith SE (1997) Cloning plant genes differentially expressed during colonisation of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 135:291-301

    CAS  Google Scholar 

  • Nagahashi G (2000) In vitro and in situ techniques to examine the role of roots and root exudates during AM fungus-host interactions. In: Kapulnik Y, Douds Jr DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 287-300

    Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: Mechanisms and implica-tions for management. Plant Soil 76:319-337

    CAS  Google Scholar 

  • Ocampo JA, Martin J, Hayman DS (1980) Influence of plant interactions on vesicular-arbuscular mycorrhizal infections. I. Host and non-host plants grown together. New Phytol 84:27-35

    Google Scholar 

  • Pakovsky RS (1989) Carbohydrate, protein amino acid status of Glycine-Glomus-Bradyrhizobium symbiosis. Physiol Plant 72:733-746

    Google Scholar 

  • Pearson JN, Schweiger P (1993) Scutellospora calospora (Nicol. and Gerd. ) Walker and Sanders associated with subterranean clover: dynamics of colonisation, sporulation and soluble carbohydrates. New Phytol 124:215-219

    Google Scholar 

  • Pearson JN, Schweiger P (1994) Scuttelospora calospora (Nicol. and Gerd. ) Walker and Sanders associated with subterranean clover produces non-infective hyphae during sporulation. New Phytol 127:697-701

    Google Scholar 

  • Pearson JN, Abbott LK, Jasper DA (1993) Mediation of competition between two colo-nizing VA mycorrhizal fungi by the host plant. New Phytol 123:93-98

    Google Scholar 

  • Pearson JN, Abbott LK, Jasper DA (1994) Phosphate, soluble carbohydrates and the com-petition between two arbuscular mycorrhizal fungi colonizing subterranean clover. New Phytol 127:101-106

    CAS  Google Scholar 

  • Peterson RL, Guinel FC (2000) The use of plant mutants to study regulation of coloniza-tion by AM fungi. In: Kapulnik Y, Douds Jr DD (eds) Arbuscular mycorrhizas: physi-ology and function. Kluwer, Dordrecht, pp 147-171

    Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462-466

    CAS  PubMed  Google Scholar 

  • Read DJ (1990) Mycorrhizas in ecosystems - Nature’s response to the ‘Law of the mini-mum’. In: Hawksworth DL (ed) Frontiers in mycology. CAB International, Walling-ford, pp 101-130

    Google Scholar 

  • Robson AD, Abbott LK (1989) The effect of soil acidity on microbial activity in soil. In: Robson AD (ed) Soil acidity and plant growth. Academic Press, Sydney, pp 139-165

    Google Scholar 

  • Rosendahl S, Taylor JW (1997) Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLP. Mol Ecol 6:821-829

    CAS  Google Scholar 

  • Rosewarne GM, Barker SJ, Smith SE, Smith FA, Schachtman DP (1999) A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol 144:507-516

    CAS  Google Scholar 

  • Sagan M, Morandi D, Tarenghi E, Duc G (1995) Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn. ) after g-ray mutagenesis. Plant Sci 111:63-71

    CAS  Google Scholar 

  • Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker and Hall. New Phytol 129:425-431

    CAS  Google Scholar 

  • Saito M (2000) Symbiotic exchange of nutrients in arbuscular mycorrhizas: Transport and transfer of phosphorus. In: Kapulnik Y, Douds Jr DD (eds) Arbuscular mycor-rhizas: physiology and function. Kluwer, Dordrecht, pp 85-105

    Google Scholar 

  • Sanders IR, Fitters AH (1992) Evidence for differential responses between host-fungus combinations of vesicular-arbuscular mycorrhizas from a grassland. Mycol Res 96:415-419

    Google Scholar 

  • Sano SM, Abbott LK, Solaiman MZ, Robson AD (2002) Influence of liming, inoculum level and inoculum placement on root colonization of subterranean clover. Mycor-rhiza 12:285-290

    CAS  Google Scholar 

  • Scheltema MA, Abbott LK, Robson AD (1987) Seasonal variation in infectivity of VA mycorrhizal fungi in annual pastures in a Mediterranean environment. Aust J Agric Res 38:707-715

    Google Scholar 

  • Schwab SM, Menge JA, Tinker PB (1991) Regulation of nutrient transfer between host and fungus in vesicular mycorrhizas. New Phytol 117:387-398

    CAS  Google Scholar 

  • Senoo K, Solaiman MZ, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H (2000) Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment. Plant Cell Physiol 41:726-732

    CAS  PubMed  Google Scholar 

  • Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partition-ing of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7-15

    CAS  PubMed  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agroe-cosystems. Deutsche Gesellschaft für Technische Zusammenarbeit. Eschborn, Ger-many, pp 371

    Google Scholar 

  • Smilauer P (2001) Communities of arbuscular mycorrhizal fungi in grassland: seasonal variability and effects of environment and host plants. Folia Geobot 36:243-263

    Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol 137:373-388

    Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357-366

    Google Scholar 

  • Smith SE, Dickson S (1991) Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques. Aust J Plant Physiol 18:737-648

    Google Scholar 

  • Smith SE, Smith FA (1996) Mutualism and parasitism: diversity in function and structure in the “arbuscular” (VA) mycorrhizal symbiosis. Adv Bot Res 22:1-43

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London, pp 1-605

    Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:683-694

    CAS  Google Scholar 

  • Solaiman MZ, Hirata H (1997) Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant Soil 191:1-12

    CAS  Google Scholar 

  • Solaiman MZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycor-rhizal fungi revealed by radiorespirometry. New Phytol 136:533-538

    CAS  Google Scholar 

  • Solaiman MZ, Saito M (2001) Phosphate efflux from the intraradical hyphae of an arbus-cular mycorrhizal fungus, Gigaspora margarita, in vitro and its implication to phos-phorus translocation in the hyphae. New Phytol 151:525-533

    CAS  Google Scholar 

  • Solaiman MZ, Abbott LK (2003) Phosphorus uptake by a community of arbuscular myc-orrhizal fungi in jarrah forest. Plant Soil 248:313-320

    CAS  Google Scholar 

  • Solaiman MZ, Ezawa T, Kojima T, Saito M (1999) Polyphosphates in intraradical and extraradical hyphae of arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5604-5606

    CAS  PubMed  Google Scholar 

  • Solaiman MZ, Senoo K, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H (2000) Characterization of mycorrhizas formed by Glomus sp. on roots of hypern-odulating mutants of Lotus japonicus. J Plant Res 113:443-448

    Google Scholar 

  • Sylvia DM (1986) Spatial and temporal distribution of vesicular-arbuscular mycorrhizal fungi associated with Uniola paniculata in Florida foredunes. Mycologia 78:728-734

    Google Scholar 

  • Sylvia DM (1988) Activity of external hyphae vesicular arbuscular mycorrhizal fungi. Soil Biol Biochem 20:39-43

    Google Scholar 

  • Stahl PD, Christensen M (1991) Population variation in the mycorrhizal fungus Glomus mosseae: breath of environmental tolerance. Mycol Res 95:300-3007

    Google Scholar 

  • Sylvia DM, Wilson DO, Graham JH, Maddox JJ, Millner P, Morton JB, Skipper HD, Wright SF, Jarstfer AG (1993) Evaluation of vesicular arbuscular mycorrhizal fungi in diverse plants and soils. Soil Biol Biochem 25:705-713

    Google Scholar 

  • Tester M, Smith SE, Smith FA (1987) The phenomenon of non-mycorrhizal plants. Can J Bot 65:419-431

    Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora margarita and Glomus fasciculatum in relation to root car-bohydrates. New Phytol 103:751-765

    Google Scholar 

  • Tijssen JPF, Dubbelman TMAR, Van Steveninak J (1983) Isolation and characterization of polyphosphate from the yeast cell surface. Biochem Biophysics Acta 760:143-148

    CAS  Google Scholar 

  • Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350-363

    Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141-163

    CAS  Google Scholar 

  • Tommerup IC, Sivasithamparam K (1990) Zygospores and asexual spores of Gigaspora decipiens, an arbuscular mycorrhizal fungus. Mycol Res 94:897-900

    Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel, Boller T, Wiemken A, Sanders IR (1998a) Mycorrhizal fungal diversity determines plant biodi-versity, ecosystem variability and productivity. Nature 396:69-72

    Google Scholar 

  • Van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998b) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082-2091

    Google Scholar 

  • Walker C, Trappe JM (1993) Names and epithets in the glomales and endogonales. Mycol Res 97:339-344

    Google Scholar 

  • Wardle DA (1999) Is “sampling effect”a problem for experiments investigating biodiver-sity - ecosystem function relationships? Oikos 87:403-407

    Google Scholar 

  • Wegel E, Schauser L, Sandal N, Stougaard J, Parniske M (1998) Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Mol Plant-Microbe Interact 11:933-936

    CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97-107

    CAS  Google Scholar 

  • Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi dur-ing active colonization of roots. Plant Soil 181:193-203

    CAS  Google Scholar 

  • Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mossae contain symbiosis-spe-cific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta 182:22-26

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solaiman, M.Z., Abbott, L. (2008). Functional Diversity of Arbuscular Mycorrhizal Fungi on Root Surfaces. In: Varma, A., Abbott, L., Werner, D., Hampp, R. (eds) Plant Surface Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74051-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74051-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74050-6

  • Online ISBN: 978-3-540-74051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics