Skip to main content

Interaction Between Soil Bacteria and Ectomycorrhiza-Forming Fungi

  • Chapter
Book cover Plant Surface Microbiology

Roots constitute important plant organs for water and nutrient uptake.However, they also release a wide range of carbon compounds of low molecular weight which are called exudates. These compounds form the basis for an environment rich in diversified microbiological populations, the rhizosphere (Hiltner 1904; the rhizosphere has been defined as a narrow zone of soil which is influenced by living roots). Bacteria are an important part of these populations. In addition, roots of most terrestrial plants develop symbiotic structures (mycorrhiza) with soil-borne fungi. In these interactions, the fungal partner provides the plant with improved access to water and nutrients in the soil due to more or less complex hyphal structures that emanate from the root surface and extend far into the soil. The plant, in return, supplies carbohydrates for fungal growth and maintenance (Smith and Read 1997; Hampp and Schaeffer 1998). Due to leakage and the turnover of mycorrhizal structures, these solutes are also released into the rhizosphere where they can be accessed by other microorganisms. The term “rhizosphere” has, therefore been extended to “mycorrhizosphere” (Oswald and Ferchau 1968). In the latter, two different zones can be distinguished: the surface of the mycorrhizal structure, affected by both root and fungus, and that occupied by fungal hyphae only. The latter has been termed “hyphosphere”(Marschner 1995). Soil free of plant and fungal components has been referred to as “bulk soil” (Andrade et al. 1997). It is reasonable to believe that these different spheres may differ in their microbial activities, and it has been shown that microbial communities within the rhizosphere are distinct from those of nonrhizosphere soil

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizos-phere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71-79

    Article  CAS  Google Scholar 

  • Becker DM, Bagley ST, Podila GK (1999) Effects of mycorrhizal-associated strepto-mycetes on growth of Laccaria bicolor, Cenococcum geophilum, und Armillaria species and on gene expression in Laccaria bicolor. Mycologia 91:33-40

    Article  Google Scholar 

  • Berg MP, Kniese JP, Verhoef HA (1998) Dynamics and stratification of bacteria and fungi in the organic layers of a Scots pine forest soil. Biol Fertil Soils 26:313-322

    Article  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005-3010

    CAS  PubMed  Google Scholar 

  • Brule C, Frey-Klett P, Pierrat JC, Courrier S, Gerard F, Lemoine MC, Rousselet JL, Sommer J, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33:1683-1694

    Article  CAS  Google Scholar 

  • Citterio B, Cardoni P, Potenza L, Amicucci A, Atocchi V, Gola G, Nuti M (1995) Isolation of bacteria from sporocarps of Tuber magnatum pico, tuber borchii vitt. and Tuber maculatum vitt. : identification and biochemical characterization. In: Stocchi V, Bon-fante P, Nuti M (eds) Biotechnology of ectomycorrhizae. Plenum Press, New-York, pp 241-248

    Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin Heidelberg New York, pp 1-8

    Google Scholar 

  • Dunstan WA, Malajczuk N, Dell, B (1998) Effects of bacteria on mycorrhizal development and growth of container-grown Eucalyptus diversicolor F. Muell. seedlings. Plant Soil 201:241-249

    Article  CAS  Google Scholar 

  • Foster RC, Marks GC (1967) The fine structure of the mycorrhizas of Pinus radiata. Aust J Biol Sci 19:1027-1038

    Google Scholar 

  • Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Neyra M, Chote JL (2002) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holo-sericea with Pisolithus alba. New Phytol 153:81-89

    Article  Google Scholar 

  • Frey-Klett P, Brule C, Garbaye J (1997) A proposed model for the mycorrhiza-helper effect of Pseudomonas fluorescens BBc6 on the ectomycorrhizal system Laccaria bicolorS238N-Douglas fir. 4th International Workshop on Plant Growth Promoting Rhizobacteria, Sapporo, Japan

    Google Scholar 

  • Frey-Klett P, Churin JL, Pierrat JC, Garbaye J (1999) Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhiza helper bacterium in two forest nurs-eries. Soil Biol Biochem 31:1555-1562

    Article  CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Courriers S, Martinotii G, Pierrat JC, Garbaye J (2000) Ectomy-corrhizosphere effect of the Douglas fir-Laccaria bicolor symbiosis on the functional diversity of fluorescent pseudomonads in a forest nursery. 5th International Work-shop on PGPR, Cordoba, Argentine. www.ag. auburn. edu/argentina/pdfmanuscripts/ freyklett. pdf

  • Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin (1997) Metabolic and genotyping finger-printing of fluorescent pseudomonads associated with the Douglas fir-Laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852-1860

    CAS  PubMed  Google Scholar 

  • Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of Mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas Fir. Appl Environ Microbiol 63:139-144

    CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197-210

    Article  Google Scholar 

  • Garbaye J, Churin JL, Duponnois R (1992) Effects of substrate disinfection, fungicide treatment and mycorrhiza helper bacteria (MHB) on ectomycorrhiza formation of pedunculate oak inoculated with Laccaria laccata in two bare-root nurseries. Biol Fertil Soils 13:55-47

    Article  CAS  Google Scholar 

  • Garbaye J, Duponnois R (1992) Specificity and function of mycorrhiza helper bacteria (MHB) associated with the Pseudotsuga menziesii-Laccaria laccata symbiosis. Sym-biosis 14:335-344

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Micro-biol 41:109-117

    Article  CAS  Google Scholar 

  • Hampp R, Schaeffer C (1998) Mycorrhiza - Carbohydrate and energy metabolism. In: Varma A, Hock B (eds) Mycorrhiza - structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 273-303

    Google Scholar 

  • Heinonsalo J, Jorgensen KS, Haahtela K, Sen R (2000) Effects of Pinus sylvestris root growth and mycorrhizosphere development on bacterial carbon source utilization and hydrocarbon oxidation in forest and petroleum-contaminated soils. Can J Micro-biol 46:451-464

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem gebiet der Bodenbak-teriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirt Ges 98:59-78

    Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336-339

    Article  Google Scholar 

  • Karabaghli C, Frey-Klett P, Sotta B, Bonnet M, Le Tacon F (1998) In vitro effects of Lac-caria bicolor S238 N and Pseudomonas fluorescens strain BBc6 on rooting of de-rooted shoot hypocotyls of Norway spruce. Tree Physiol 18:103-111

    PubMed  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39-43

    Article  Google Scholar 

  • Li CY, Massicotte HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae. Plant Soil 140:35-40

    Article  CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366-371

    Google Scholar 

  • Malajczuk N (1979) The microflora of unsuberized roots of Eucalyptus calophylla R. Br. and Ecalyptus marginata Donn ex Sm seedlings grown in soils suppressive and con-ductive to Phytophthora cinnamomi Rands. II. Mycorrhizal roots and associated microflora. Aust J Bot 27:235-254

    Article  Google Scholar 

  • Manachére G, Rober JC, Durand R, Bret JP, Févre M (1983) Differentiation in the basid-iomycetes. In: Smith JE (ed) Mycology series; vol 4. Fungal differentiation: A contem-porary synthesis. Marcel Dekker, New York, pp 481-514

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London, 571 pp

    Google Scholar 

  • Meyer JR Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bac-terium, Pseudomonas putida. Soil Biol Biochem 18:185-190

    Article  Google Scholar 

  • Mogge B, Loferer C, Agerer R, Hutzler P, Hartmann A (2000) Bacterial community struc-ture and colonialization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271-278

    Article  Google Scholar 

  • Moore JC, Hunt HW (1988) Resource compartmentation and the stability of real ecosys-tems. Nature 333:261-263

    Article  Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (eds) (1990) Physiology of the bacterial cell. Sinauer, MA, USA

    Google Scholar 

  • Nohrstedt H-Ö, Arnebrandt K, Bååth E, Söderström B (1989) Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized pine forest soils in Sweden. Can. J For Res 19:323-328

    Article  Google Scholar 

  • Nurmiaho-Lassila E-L, Timonen S, Haahtela K, Sen R (1997) Bacterial colonialization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an elec-tron microscopy study. Can J Microbiol 43:1017-1035

    Article  CAS  Google Scholar 

  • Oswald ET, Ferchau HA (1968) Bacterial associations of coniferous mycorrhizae. Plant Soil 28:187-192

    Article  Google Scholar 

  • Pedersen EA, Reddy MS, Chakravarty P (1999) Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonialization of lodgepole pine and white seedlings. Eur J For Pathol 29:123-134

    Article  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy D, Cotrell JS (1999) Probability-based protein identifica-tion by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551-3567

    Article  CAS  PubMed  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743-751

    Article  Google Scholar 

  • Probanza A, Lucas JA, Guiterrez Mañero JF (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L. ) Gaertn. ) growth. I. Characterization of growth promoting and growth inhibiting bacterial strains. Plant Soil 182:59-66

    Article  CAS  Google Scholar 

  • Probanza A, Mateos JL, Lucas Garcia JA, Ramos B, de Felipe MR, Guiterrez Manero JF (2001) Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonialization, and mycorrhizal infection. Microb Ecol 41:140-148

    CAS  PubMed  Google Scholar 

  • Sarand I, Timonen S, Nurmiaho-Lassila E-L, Koivula T, Haahtela K, Romantschuk M, Sen R (1998) Microbial biofilms and catabolic plasmid harbouring degradative fluores-cent pseudomonads in Scots pine mycorrhizospheres developed on petroleum conta-minated soil. FEMS Microbiol Ecol 27:115-126

    Article  CAS  Google Scholar 

  • Sarand I, Timonen S, Koivula T, Peltola R, Haahtela K, Sen R, Romantschuk M (1999) Tol-erance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and flu-orescent pseudomonads individually and under associative conditions. J Appl Micro-biol 86:817-826

    Article  CAS  Google Scholar 

  • Schelkle M, Peterson RL (1996) Suppression of common root pathogens by helper bacte-ria and ectomycorrhizal fungi in vitro. Mycorrhiza 6:481-485

    Article  Google Scholar 

  • Schelkle M, Ursic M, Farquhar M, Peterson RL (1996) The use of laser scanning confocal microscopy to characterize mycorrhizas of Pinus strobus L. and to localize associated bacteria. Mycorrhiza 6:431-440

    Article  Google Scholar 

  • Sen R (2000) Budgeting for the wood-wide web. New Phytol 145:161-165

    Article  Google Scholar 

  • Sheterline P, Handel SE, Molloy C, Hendry KAK (1992) The nature and regulation of actin filament turnover in cells. Acta Histochem 41:303-309

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  • Söderström B (1992) Ecological potential of ectomycorrhizal mycelium. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. Cambridge Uni-versity Press, Cambridge, pp 77-83

    Google Scholar 

  • Söderström B, Bååth E, Lundgren B (1983) Decrease in soil microbial activity and bio-mass owing to nitrogen amendments. Can J Microbiol 29:1500-1506

    Article  Google Scholar 

  • Tarkka MT, Vasara R, Gorfer M, Raudaskoski M (2000) Molecular characterization of actin genes from homobasidiomycetes: two different actin genes from Schizophyllum commune and Suillus bovinus. Gene 251:27-35.

    Article  CAS  PubMed  Google Scholar 

  • Timonen S, Jorgensen KS, Haahtela K, Sen R (1998) Bacterial community structure and defined locations of Pinus sylvestris-Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44:499-513

    Article  CAS  Google Scholar 

  • Varese GC, Portinario S, Trotta A, Scannerini S, Luppi-Mosca AM, Martinotti MG (1996) Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effects on in vitro growth of the Microbiont. Symbiosis 21:129-147

    Google Scholar 

  • Verhoef HA, Brussaard L (1990) Decomposition and nitrogen mineralization in natural and agro-ecosystems: the contribution of soil animals. Biogeochemistry 11:175-211

    Article  Google Scholar 

  • Watteau F, Berthelin J (1990) Iron solubilization by mycorrhizal fungi producing siderophores. Symbiosis 9:59-67

    CAS  Google Scholar 

  • Whipps JM, Lynch JM (1986) The influence of rhizosphere on crop productivity. Adv Microb Ecol 9:187-244

    Google Scholar 

  • Williams KR, Stone KL (1997) Enzymatic cleavage and HPLC peptide mapping of pro-teins. In: Walker J (ed) Molecular biotechnology. Humana Press, Totowa, pp 155-167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hampp, R., Maier, A. (2008). Interaction Between Soil Bacteria and Ectomycorrhiza-Forming Fungi. In: Varma, A., Abbott, L., Werner, D., Hampp, R. (eds) Plant Surface Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74051-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74051-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74050-6

  • Online ISBN: 978-3-540-74051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics