Skip to main content

Paradigmatic Role of Galactose Switch

  • Chapter
Galactose Regulon of Yeast
  • 694 Accesses

In classical genetics, inferences are based on the phenotypic differences between a wild-type and a mutant organism. This old-fashioned systems biology continues to provide deep insights into the genetic basis of fundamental biological processes mainly at the phenomenological level. This limitation was partly overcome by the revolutionary developments in recombinant DNA technology (Chap. 5). With this, it was possible to isolate, manipulate in vitro, and reintroduce a gene into the organism to determine and evaluate its effects on the performance at the phenotypic level. The impact of these combined approaches in deciphering the mechanistic details of molecular interactions has been impressive. However, biological problems are too challenging to be understood, even with these powerful approaches. Nevertheless, the classical and molecular genetic approaches culminated in a large body of data including the whole genome sequence of different organisms resulting in a paradigm shift in experimental biology beyond expectations.

In no other experimental organism genomic approach has been so successfully used than in S. cerevisiae. This is because yeast has been the vanguard of biochemical, genetic, and cell biological studies. An existing wealth of knowledge of yeast biology was put to great advantage in the context of sequence information. One of the immediate outcomes of the genome sequence is “expression profiling” using micro-array analysis. This technique has become quite routine and has yielded valuable information not only in yeast but also in almost all organisms whose genome sequence is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alon U (2007) An introduction to systems biology. Chapman & Hall, New York

    Google Scholar 

  • Anders A, Liele H, Franke K, Kapp L, Stelling J, Giles ED, Breunig KD (2006) The galactose switch in K. lactis depends on nuclear competition between GAL1 and GAL4 for GAL80 binding. J Biol Chem 281:29337–29348

    Article  PubMed  CAS  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Lebier S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  PubMed  CAS  Google Scholar 

  • Becskel MA, Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435:228–232

    Article  Google Scholar 

  • Bhat PJ (2003) Galactose-1-phosphate is a regulator of inositol monophosphatase: A fact or a fiction. Medical Hypothesis 60:123–128

    Article  Google Scholar 

  • Bhat PJ, Murthy TVS (2001) Transcriptional control of GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanisms of galactose expression signal transduction. Microbiology 40: 1059–1066

    CAS  Google Scholar 

  • Bhat PJ, Venkatesh KV (2005) Stochastic variation in the concentration of the repressor activates GAL genetic switch: implications in the evolution of regulatory network. FEBS Lett 579:597–603

    Article  PubMed  CAS  Google Scholar 

  • Cornish-Bowden A, Cardenas M (2001) Complex network of interactions connect genes to phenotypes. Trends Biochem Sci 26:463–464

    Article  PubMed  CAS  Google Scholar 

  • Dietrich et al (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:5668–5674

    Article  Google Scholar 

  • Elowitz MB et al. (2002) Stochastic gene expression is a single cell. Science 297:1183–1186

    Article  PubMed  CAS  Google Scholar 

  • Fell D (2001) Beyond genomics. Trends Genet 17:680–682

    Article  PubMed  CAS  Google Scholar 

  • Field S, Song Ok-Kyu (1989) Novel genetic system to detect in vivo protein–protein interaction. Nature 340:245–246

    Article  Google Scholar 

  • Fields S, Sternglanz R (1994) The two-hybrid system. Trends Genet 10(8):286–291

    Article  PubMed  CAS  Google Scholar 

  • Frey PA (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 462:461–470

    Google Scholar 

  • Gally AJ, Edelman GM (2001) Degeneracy and complexity in biological systems. Proc Nat Acad Sci USA 98:13763–13768

    Article  PubMed  Google Scholar 

  • Glaever et al (2002) Functional profiling of Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  Google Scholar 

  • Goldberger RF (1974) Autogenous regulation of gene expression. Science 183:810–816

    Article  PubMed  CAS  Google Scholar 

  • Hall BD, Spiegelman S (1961) Sequence complimentarity of T2 DNA and T2 specific RNA. Proc Nat Acad Sci USA 47:137–146

    Article  PubMed  CAS  Google Scholar 

  • Hawkins MK, Smolke CD (2006) The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae. J Biol Chem 281:13485–13492

    Article  PubMed  CAS  Google Scholar 

  • Hittinger CT, Carrol SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–681

    Article  PubMed  CAS  Google Scholar 

  • Hittinger CT, Rokas A, Carroll SB (2004) Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeast. Proc Nat Acad Sci USA 101(9):14144–14149

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel JD (2006) Microarray technology: beyond transcript profiling and genotype analysis. Nature Reviews 7:200–209

    Article  PubMed  CAS  Google Scholar 

  • Holde KE, Johnson van WC, Ho PS (1998) Principles of physical biochemistry. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Hume DA (2000) Probability in transcriptional regulation and its implication for leukocyte differentiation and inducible gene expression Blood 96:2323–2328

    PubMed  CAS  Google Scholar 

  • Hwang D, Smith JJ, Leslie DM, Weston AD, Rust AG, Ramsey S, Atauri P, Siegel AF, Bolouri H, Aitchison JD, Hood L (2005) A data-integration methodology for systems biology: experimental verification. Proc Nat Acad Sci USA 102:17302–17307

    Article  PubMed  CAS  Google Scholar 

  • Hwang D, Smith JJ, Leslie DM, Weston AD, Rust AG, Ramsey S, Atauri P, Siegel AF, Bolouri H, Aitchison JD, Hood L (2005) A data-integration methodology for systems biology: experimental verification. Proc Nat Acad Sci USA 102:17302–17307

    Article  PubMed  CAS  Google Scholar 

  • Idekar T et al (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–933

    Article  Google Scholar 

  • Janine R, Maria R, Guther LS, Miline KG, Ferguson MAJ (2002) Galactose metabolism is essential for the African sleeping sickness parasite Trypanosoma Bruci. Proc Nat Acad Sci USA 99:5884–5889

    Article  Google Scholar 

  • Kalckar HM (1966) High-energy phosphate bonds: optional or obligatory? In: Cairns J, Stent G, Watson JD (eds) Phage and origins of molecular biology. Cold Spring Harbor Laboratory, Long Island, NY, pp 43–49

    Google Scholar 

  • Kellis M, Birren W, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–623

    Article  PubMed  CAS  Google Scholar 

  • Kemkemer R et al. (2002) Increased noise as an effect of haploinsufficiency of the tumor suppressor gene neurofibromatosis type1 in vitro. Proc Natl Acad Sci USA 99:13783–13788

    Article  PubMed  CAS  Google Scholar 

  • Kew OM, Douglas HC (1976) Genetic co-regulation of galactose and melibiose utilization in Saccharomyces. J Bacteriol 125:33–41

    PubMed  CAS  Google Scholar 

  • Kodama T, Hisatomi T, Kakiuchi M, Aya R, Yoshida K, Bando Y, Takami T, Tsuboi M (2003) Unique distribution of GAL genes on chromosome IX in the yeast Saccharomyces naganishi. Curr Microbiol 47:497–500

    Article  PubMed  CAS  Google Scholar 

  • Koern M, Elston TC, Blake WJ, Collins JJ (5005) Stochasticity in gene expression: from theories to phenotypes. Nature 6:451–464

    Google Scholar 

  • Kupiec JJ (1997) Darwinian theory for the origin of cellular differentiation. Mol Gen 255:201–208

    CAS  Google Scholar 

  • Lai K, Elsas LJ (2000) Over-expression of human UDPglucose pyrophosphorylase rescues galactose-1-phosphate uridyltransferase deficient. Biochem Biophys Res Commun 271:392–400

    Article  PubMed  CAS  Google Scholar 

  • Legrain P, Selig L (2000) Genome-wide protein interaction maps using two-hybrid system. FEBS Lett 480:32–36

    Article  PubMed  CAS  Google Scholar 

  • Leuther KK, Johnston SA (1992) Non-dissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333–1335

    Article  PubMed  CAS  Google Scholar 

  • McAdaams HH, Arkin A (1999) It is a noisy business. Trends Genet 15:65–69

    Article  Google Scholar 

  • McAdams HH, Adam A (1999) It is a noisy business. Trends Genet 15:65–69

    Article  PubMed  CAS  Google Scholar 

  • McGuire SE, Roman, Davis RL (2004) Gene expression systems in Drosophila: A synthesis of time and space. Trends Genet 20:384–391

    Article  PubMed  CAS  Google Scholar 

  • Mehta DV, Kabir A, Bhat PJ (1999) Expression of human inositol monophosphatase suppresses galactose toxicity in Saccharomyces cerevisiae: possible implications for galactosemia. Biochem Biophys Acta 1454:217–226

    PubMed  CAS  Google Scholar 

  • Moller K, Olsson L, Piskur J (2001) Ability for anaerobic growth is not sufficient for the development of the petite phenotype in Saccharomyces kluyveri. J Bacteriol 183:2485–2489

    Article  PubMed  CAS  Google Scholar 

  • Mylin LM, Hopper JE (1997) Inducible expression cassettes in yeast: GAL4. In: Taun R (ed) Recombinant gene expression protocols. Humana Press, Totowa, NJ, Meth Mol Biol Vol. 62

    Google Scholar 

  • Peccoud J, Veldern KV, Podlich D, Winkler C, Arthus L, Cooper M (2004) The selective values of alleles in a molecular network model are context-dependent. Genetics 166:1715–1725

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1998) I wish I had made you angry earlier. Oxford University Press

    Google Scholar 

  • Ptashne M (1992) A genetic switch: phage P and higher organisms. Cell Press and Blackwell Scientific Publications, Cambridge

    Google Scholar 

  • Ramsey SA, Smith JJ, Orrel D, Marelli M, Peterson TW, de Atauri, P Bolouri H, Aitchison JD (2006) Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast (2006). Nature Genet 38:1082–1086

    Article  PubMed  CAS  Google Scholar 

  • Raser MJ, O’Shea EK (2005) Noise in gene expression: Origins, consequence and control. Science 309:2010–2013

    Article  PubMed  CAS  Google Scholar 

  • Ren B et al (2000) Genome-wide location and function of DNA-binding proteins. Science 290:2306–2309

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Taxiera M (2005) A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae and Kluyveromyces lactis. FEMS Yeast Res 5:1115–1128

    Article  Google Scholar 

  • Semsey S, Vernik, K, Adya S (2006) Three-stage regulation of the amphibolic GAL regulon: from repressosome to GALR-free DNA. J Mol Biol 358:355–365

    Article  PubMed  CAS  Google Scholar 

  • Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J (2004) Robustness of cellular functions. Cell 118:675–685

    Article  PubMed  CAS  Google Scholar 

  • Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Nat Acad Sci USA 99:12795–12800

    Article  PubMed  CAS  Google Scholar 

  • Sweeney ST, Broadie K, Keane J, Niehemann H, O’ Kane CJ (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates and causes behavioral defects. Neuron 14:341–351

    Article  PubMed  CAS  Google Scholar 

  • Teichmann SA, Veitia RA (2004) Genes encoding subunits of stable complexes are clustered on the yeast chromosomes: an interpretation from a dosage-balance perspective. Genetics 167:2121–2125

    Article  PubMed  CAS  Google Scholar 

  • Thattai M, van Oudenaaredn A (2004) Stochastic gene expression in fluctuating environment. Genetics 167:523–520

    Article  PubMed  Google Scholar 

  • Verma M, Bhat PJ, Venkatesh KV (2003) Quantitative analysis of GAL genetic switch of Saccharomyces cerevisiae reveals that nucleocytoplasmic shuttling of Gal80p results in a highly sensitive response to galactose. J Biol Chem 278:48764–48769

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2005) Robustness and evolvability in living systems. Princeton University Press, Princeton

    Google Scholar 

  • White MA (1996) The yeast two-hybrid system: forward and reverse. Proc Nat Acad Sci USA 93:10001–10003

    Article  PubMed  CAS  Google Scholar 

  • Yang XE, Hubbard JA, Carlson M (1992) A protein kinase substrate identified by two-hybrid system. Science 257:680–682

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Paradigmatic Role of Galactose Switch. In: Galactose Regulon of Yeast. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74015-5_8

Download citation

Publish with us

Policies and ethics