Skip to main content

Antimicrobial Peptides as First-Line Effector Molecules of the Human Innate Immune System

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 21))

Findings of the past two decades clearly document that epithelial cells have the capacity to mount a “chemical barrier” apart from the physical defense shield against invading microorganisms. This “chemical barrier” includes preformed antimicrobial proteins present at the uppermost layers of the epithelium as well as newly synthesized compounds that are produced upon stimulation after contact with pathogenic bacteria or bacterial products, endogenous proinflammatory cytokines and/or the disruption of the physical barrier by wounding with subsequently released growth factors. This chapter introduces the reader into the field by giving an overview of the most important human epithelial and phagocyte derived anti-microbial peptides. Furthermore, strategies for the putative action of antimicrobial peptides in the healthy human are presented. The third part of the review gives an overview of several diseases which are in connection with a decreased or impaired antimicrobial peptide expression: skin diseases and wound healing, diseases of the airway epithelia and the gastrointestinal tract as well as diseases associated with phagocyte dysfunction. Exogenous application of antimicrobial peptides could be a promising therapeutic option in the near future for the treatment of patients with epithelial infections and chronic wounds but a much more promising option would be the promotion of the endogenous expression of antimicrobial peptides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abiko Y, Nishimura M, Kusano K, Yamazaki M, Arakawa T, Takuma T, Kaku T (2003) Upregulated expression of human beta defensin-1 and -3 mRNA during differentiation of keratinocyte immortalized cell lines, HaCaT and PHK16–0b. J Dermatol Sci 31:225–228

    Article  PubMed  CAS  Google Scholar 

  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 92:195–199

    Article  PubMed  CAS  Google Scholar 

  • Ali RS, Falconer A, Ikram M, Bissett CE, Cerio R, Quinn AG (2001) Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol 117:106–111

    Article  PubMed  CAS  Google Scholar 

  • Alkemade JA, Molhuizen HO, Ponec M, Kempenaar JA, Zeeuwen PL, Jongh GJ de, Vlijmen-Willems IM van, Erp PE van, Kerkhof PC van de, Schalkwijk J (1994) SKALP/elafin is an inducible proteinase inhibitor in human epidermal keratinocytes. J Cell Sci 107:2335–2342

    PubMed  CAS  Google Scholar 

  • Allaker RP, Kapas S (2003) Adrenomedullin expression by gastric epithelial cells in response to infection. Clin Diagn Lab Immunol 10:546–551

    PubMed  CAS  Google Scholar 

  • Allaker RP, Zihni C, Kapas S (1999) An investigation into the antimicrobial effects of adrenomedullin on members of the skin, oral, respiratory tract and gut microflora. FEMS Immunol Med Microbiol 23:289–293

    PubMed  CAS  Google Scholar 

  • Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, Wilson JM (1998) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102:874–880

    Article  PubMed  CAS  Google Scholar 

  • Bals R, Weiner DJ, Meegalla RL, Wilson JM (1999) Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 103:1113–1117

    Article  PubMed  CAS  Google Scholar 

  • Bensch KW, Raida M, Magert HJ, Schulz-Knappe P, Forssmann WG (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368:331–335

    Article  PubMed  CAS  Google Scholar 

  • Bevins CL (2006) Paneth cell defensins: key effector molecules of innate immunity. Biochem Soc Trans 34:263–266

    Article  PubMed  CAS  Google Scholar 

  • Braff MH, Di Nardo A, Gallo RL (2005) Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol 124:394–400

    Article  PubMed  CAS  Google Scholar 

  • Butmarc J, Yufit T, Carson P, Falanga V (2004) Human beta-defensin-2 expression is increased in chronic wounds. Wound Repair Regen 12:439–443

    Article  PubMed  Google Scholar 

  • Casewell MW, Desai N (1983) Survival of multiply-resistant Klebsiella aerogenes and other gram-negative bacilli on finger-tips. J Hosp Infect 4:350–360

    Article  PubMed  CAS  Google Scholar 

  • Chronnell CM, Ghali LR, Ali RS, Quinn AG, Holland DB, Bull JJ, Cunliffe WJ, McKay IA, Philpott MP, Muller-Rover S (2001) Human beta defensin-1 and -2 expression in human pilosebaceous units: upregulation in acne vulgaris lesions. J Invest Dermatol 117:1120–1125

    Article  PubMed  CAS  Google Scholar 

  • Chung WO, Dale BA (2004) Innate immune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun 72:352–358

    Article  PubMed  CAS  Google Scholar 

  • Clohessy PA, Golden BE (1995) Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol 42:551–556

    Article  PubMed  CAS  Google Scholar 

  • Cole AM, Kim YH, Tahk S, Hong T, Weis P, Waring AJ, Ganz T (2001) Calcitermin, a novel antimicrobial peptide isolated from human airway secretions. FEBS Lett 504:5–10

    Article  PubMed  CAS  Google Scholar 

  • Cole AM, Liao HI, Stuchlik O, Tilan J, Pohl J, Ganz T (2002) Cationic polypeptides are required for antibacterial activity of human airway fluid. J Immunol 169:6985–6991

    PubMed  CAS  Google Scholar 

  • Conner K, Nern K, Rudisill J, O’Grady T, Gallo RL (2002) The antimicrobial peptide LL-37 is expressed by keratinocytes in condyloma acuminatum and verruca vulgaris. J Am Acad Dermatol 47:347–350

    Article  PubMed  Google Scholar 

  • Cunliffe RN (2003) Alpha-defensins in the gastrointestinal tract. Mol Immunol 40:463–467

    Article  PubMed  CAS  Google Scholar 

  • Dale BA, Krisanaprakornkit S (2001) Defensin antimicrobial peptides in the oral cavity. J Oral Pathol Med 30:321–327

    Article  PubMed  CAS  Google Scholar 

  • De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  Google Scholar 

  • Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26:3358–3363

    Article  PubMed  CAS  Google Scholar 

  • Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177:1458–1464

    Article  PubMed  CAS  Google Scholar 

  • Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117:91–97

    Article  PubMed  CAS  Google Scholar 

  • Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K (2004) S100 proteins in the epidermis. J Invest Dermatol 123:23–33

    Article  PubMed  CAS  Google Scholar 

  • Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125:183–200

    PubMed  CAS  Google Scholar 

  • Ellison RT 3rd, Giehl TJ (1991) Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88:1080–1091

    Article  PubMed  CAS  Google Scholar 

  • Ericksen B, Wu Z, Lu W, Lehrer RI (2005) Antibacterial activity and specificity of the six human alpha-defensins. Antimicrob Agents Chemother 49:269–275

    Article  PubMed  CAS  Google Scholar 

  • Ezoe K, Katsumata M (1990) Immunohistochemical study of lysozyme in human apocrine glands. J Dermatol 17:159–163

    PubMed  CAS  Google Scholar 

  • Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML (2003) Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis. Clin Exp Immunol 131:90–101

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML (2004) beta-Defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Clin Exp Immunol 137:379–385

    Article  PubMed  CAS  Google Scholar 

  • Fellermann K, Wehkamp J, Herrlinger KR, Stange EF (2003) Crohn’s disease: a defensin deficiency syndrome? Eur J Gastroenterol Hepatol 15:627–634

    Article  PubMed  CAS  Google Scholar 

  • Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond 93:306–310

    Article  CAS  Google Scholar 

  • Fritz H (1988) Human mucus proteinase inhibitor (human MPI). Human seminal inhibitor I (HUSI-I), antileukoprotease (ALP), secretory leukocyte protease inhibitor (SLPI). Biol Chem Hoppe Seyler 369[Suppl]:79–82

    PubMed  CAS  Google Scholar 

  • Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263

    Article  PubMed  CAS  Google Scholar 

  • Frye M, Bargon J, Gropp R (2001) Expression of human beta-defensin-1 promotes differentiation of keratinocytes. J Mol Med 79:275–282

    Article  PubMed  CAS  Google Scholar 

  • Fulton C, Anderson GM, Zasloff M, Bull R, Quinn AG (1997) Expression of natural peptide antibiotics in human skin. Lancet 350:1750–1751

    Article  PubMed  CAS  Google Scholar 

  • Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2004) Antimicrobial polypeptides. J Leukoc Biol 75:34–38

    Article  PubMed  CAS  Google Scholar 

  • Ganz T, Metcalf JA, Gallin JI, Boxer LA, Lehrer RI (1988) Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. J Clin Invest 82:552–556

    Article  PubMed  CAS  Google Scholar 

  • Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J, Forssmann U, Adermann K, Kluver E, Vogelmeier C, Becker D, Hedrich R, Forssmann WG, Bals R (2001) Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 306:257–264

    Article  PubMed  CAS  Google Scholar 

  • Garcia JR, Krause A, Schulz S, Rodriguez-Jimenez FJ, Kluver E, Adermann K, Forssmann U, Frimpong-Boateng A, Bals R, Forssmann WG (2001) Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 15:1819–1821

    PubMed  CAS  Google Scholar 

  • Gasior-Chrzan B, Bostad L, Falk ES (1994) An immunohistochemical study of lysozyme in the skin of psoriatic patients. Acta Derm Venereol 74:344–346

    PubMed  CAS  Google Scholar 

  • Gearing AJ, Fincham NJ, Bird CR, Wadhwa M, Meager A, Cartwright JE, Camp RD (1990) Cytokines in skin lesions of psoriasis. Cytokine 2:68–75

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3:583–590

    Article  PubMed  CAS  Google Scholar 

  • Gläser R, Harder J, Lange H, Bartels J, Christophers E, Schröder JM (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:57–64

    Article  PubMed  CAS  Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043

    Article  PubMed  CAS  Google Scholar 

  • Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1, 25-dihydroxyvitamin D3. FASEB J 19:1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Gottsch JD, Eisinger SW, Liu SH, Scott AL (1999) Calgranulin C has filariacidal and filariastatic activity. Infect Immun 67:6631–6636

    PubMed  CAS  Google Scholar 

  • Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238:325–332

    Article  PubMed  CAS  Google Scholar 

  • Guggino WB (2001) Cystic fibrosis salt/fluid controversy: in the thick of it. Nat Med 7:888–889

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schröder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schröder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Meyer-Hoffert U, Teran LM, Schwichtenberg L, Bartels J, Maune S, Schröder JM (2000) Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22:714–721

    PubMed  CAS  Google Scholar 

  • Harder J, Meyer-Hoffert U, Wehkamp K, Schwichtenberg L, Schröder JM (2004) Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol 123:522–529

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Schröder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784

    Article  PubMed  CAS  Google Scholar 

  • Harder J, Schröder JM (2005) Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol 77:476–486

    Article  PubMed  CAS  Google Scholar 

  • Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120:379–389

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368

    Article  PubMed  CAS  Google Scholar 

  • Helmerhorst EJ, Van’t Hof W, Veerman EC, Simoons-Smit I, Nieuw Amerongen AV (1997) Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem J 326:39–45

    PubMed  CAS  Google Scholar 

  • Henseler T, Christophers E (1995) Disease concomitance in psoriasis. J Am Acad Dermatol 32:982–986

    Article  PubMed  CAS  Google Scholar 

  • Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J (2003) Antimicrobial characterization of human beta-defensin 3 derivatives. Antimicrob Agents Chemother 47:2804–2809

    Article  PubMed  CAS  Google Scholar 

  • Howell MD, Boguniewicz M, Pastore S, Novak N, Bieber T, Girolomoni G, Leung DY (2006) Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol 121:332–338

    Article  PubMed  CAS  Google Scholar 

  • Huang GT, Zhang HB, Kim D, Liu L, Ganz T (2002) A model for antimicrobial gene therapy: demonstration of human beta-defensin 2 antimicrobial activities in vivo. Hum Gene Ther 13:2017–2025

    Article  PubMed  CAS  Google Scholar 

  • Huh WK, Oono T, Shirafuji Y, Akiyama H, Arata J, Sakaguchi M, Huh NH, Iwatsuki K (2002) Dynamic alteration of human beta-defensin 2 localization from cytoplasm to intercellular space in psoriatic skin. J Mol Med 80:678–684

    Article  PubMed  CAS  Google Scholar 

  • Jainkittivong A, Johnson DA, Yeh CK (1998) The relationship between salivary histatin levels and oral yeast carriage. Oral Microbiol Immunol 13:181–187

    Article  PubMed  CAS  Google Scholar 

  • Jia HP, Schutte BC, Schudy A, Linzmeier R, Guthmiller JM, Johnson GK, Tack BF, Mitros JP, Rosenthal A, Ganz T, McCray PB Jr (2001) Discovery of new human beta-defensins using a genomics-based approach. Gene 263:211–218

    Article  PubMed  CAS  Google Scholar 

  • Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273:3718–3724

    Article  PubMed  CAS  Google Scholar 

  • Kao CY, Chen Y, Thai P, Wachi S, Huang F, Kim C, Harper RW, Wu R (2004) IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 173:3482–3491

    PubMed  CAS  Google Scholar 

  • Kapas S, Bansal A, Bhargava V, Maher R, Malli D, Hagi-Pavli E, Allaker RP (2001) Adrenomedullin expression in pathogen-challenged oral epithelial cells. Peptides 22:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh K, Dowd S (2004) Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 56:285–289

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Yamazaki M, Tsuboi R, Miyajima H, Ogawa H (2006) Human beta-defensin-2, an antimicrobial peptide, is elevated in scales collected from tinea pedis patients. Int J Dermatol 45:1389–1390

    Article  PubMed  Google Scholar 

  • Kern RA, Kingkade MJ, Kern SF, Behrens OK (1951) Characterization of the action of lysozyme on Staphylococcus aureus and on Micrococcus lysodeikticus. J Bacteriol 61:171–178

    PubMed  CAS  Google Scholar 

  • Kjeldsen L, Bainton DF, Sengelov H, Borregaard N (1994) Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood 83:799–807

    PubMed  CAS  Google Scholar 

  • Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432

    PubMed  CAS  Google Scholar 

  • Klenha J, Krs V (1967) Lysozyme in mouse and human skin. J Invest Dermatol 49:396–399

    PubMed  CAS  Google Scholar 

  • Lee KC, Eckert RL (2007) S100A7 (Psoriasin) – mechanism of antibacterial action in wounds. J Invest Dermatol 127:945–957

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142:4428–4434

    PubMed  CAS  Google Scholar 

  • Li X, Leeuw E de, Lu W (2005) Total chemical synthesis of human psoriasin by native chemical ligation. Biochemistry 44:14688–14694

    Article  PubMed  CAS  Google Scholar 

  • Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279

    Article  PubMed  CAS  Google Scholar 

  • Liu AY, Destoumieux D, Wong AV, Park CH, Valore EV, Liu L, Ganz T (2002) Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol 118:275–281

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Wang L, Jia HP, Zhao C, Heng HH, Schutte BC, McCray PB Jr, Ganz T (1998) Structure and mapping of the human beta-defensin HBD-2 gene and its expression at sites of inflammation. Gene 222:237–244

    Article  PubMed  CAS  Google Scholar 

  • Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, Levy JA (2003) alpha-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. Aids 17:F23–F32

    Article  PubMed  CAS  Google Scholar 

  • Madsen P, Rasmussen HH, Leffers H, Honore B, Dejgaard K, Olsen E, Kiil J, Walbum E, Andersen AH, Basse B, et al (1991) Molecular cloning, occurrence, and expression of a novel partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin. J Invest Dermatol 97:701–712

    Article  PubMed  CAS  Google Scholar 

  • Maisetta G, Batoni G, Esin S, Luperini F, Pardini M, Bottai D, Florio W, Giuca MR, Gabriele M, Campa M (2003) Activity of human beta-defensin 3 alone or combined with other antimicrobial agents against oral bacteria. Antimicrob Agents Chemother 47:3349–3351

    Article  PubMed  CAS  Google Scholar 

  • Mallbris L, O’Brien KP, Hulthen A, Sandstedt B, Cowland JB, Borregaard N, Stahle-Backdahl M (2002) Neutrophil gelatinase-associated lipocalin is a marker for dysregulated keratinocyte differentiation in human skin. Exp Dermatol 11:584–591

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Ganz T, Lehrer RI (1995) Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol 58:128–136

    PubMed  CAS  Google Scholar 

  • Martinez A, Elsasser TH, Muro-Cacho C, Moody TW, Miller MJ, Macri CJ, Cuttitta F (1997) Expression of adrenomedullin and its receptor in normal and malignant human skin: a potential pluripotent role in the integument. Endocrinology 138:5597–5604

    Article  PubMed  CAS  Google Scholar 

  • Mempel M, Voelcker V, Kollisch G, Plank C, Rad R, Gerhard M, Schnopp C, Fraunberger P, Walli AK, Ring J, Abeck D, Ollert M (2003) Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 121:1389–1396

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Hoffert U, Wichmann N, Schwichtenberg L, White PC, Wiedow O (2003) Supernatants of Pseudomonas aeruginosa induce the Pseudomonas-specific antibiotic elafin in human keratinocytes. Exp Dermatol 12:418–425

    Article  PubMed  CAS  Google Scholar 

  • Midorikawa K, Ouhara K, Komatsuzawa H, Kawai T, Yamada S, Fujiwara T, Yamazaki K, Sayama K, Taubman MA, Kurihara H, Hashimoto K, Sugai M (2003) Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun 71:3730–3739

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070–3077

    PubMed  CAS  Google Scholar 

  • Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL (2002) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119:1090–1095

    Article  PubMed  CAS  Google Scholar 

  • Murthy AR, Lehrer RI, Harwig SS, Miyasaki KT (1993) In vitro candidastatic properties of the human neutrophil calprotectin complex. J Immunol 151:6291–6301

    PubMed  CAS  Google Scholar 

  • Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I (2001) Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 31:1066–1075

    Article  PubMed  CAS  Google Scholar 

  • Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, Nagaoka I (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106:20–26

    Article  PubMed  CAS  Google Scholar 

  • Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127:594–604

    Article  PubMed  CAS  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457

    Article  PubMed  CAS  Google Scholar 

  • Noble WC (1992) Other cutaneous bacteria. The skin microflora and microbial disease. Cambridge University Press, Cambridge

    Google Scholar 

  • Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171:3262–3269

    PubMed  CAS  Google Scholar 

  • Ogawa H, Miyazaki H, Kimura M (1971) Isolation and characterization of human skin lysozyme. J Invest Dermatol 57:111–116

    Article  PubMed  CAS  Google Scholar 

  • Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Oono T, Huh WK, Shirafuji Y, Akiyama H, Iwatsuki K (2003) Localization of human beta-defensin-2 and human neutrophil peptides in superficial folliculitis. Br J Dermatol 148:188–191

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Ganz T, Liu L, Meerloo T (2003) In human epidermis, beta-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol 74:180–182

    Article  PubMed  CAS  Google Scholar 

  • Ortega MR, Ganz T, Milner SM (2000) Human beta defensin is absent in burn blister fluid. Burns 26:724–726

    Article  PubMed  CAS  Google Scholar 

  • Ouellette AJ (1997) Paneth cells and innate immunity in the crypt microenvironment. Gastroenterology 113:1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Papini M, Simonetti S, Franceschini S, Scaringi L, Binazzi M (1982) Lysozyme distribution in healthy human skin. Arch Dermatol Res 272:167–170

    Article  PubMed  CAS  Google Scholar 

  • Pernet I, Reymermier C, Guezennec A, Branka JE, Guesnet J, Perrier E, Dezutter-Dambuyant C, Schmitt D, Viac J (2003) Calcium triggers beta-defensin (hBD-2 and hBD-3) and chemokine macrophage inflammatory protein-3 alpha (MIP-3alpha/CCL20) expression in monolayers of activated human keratinocytes. Exp Dermatol 12:755–760

    Article  PubMed  CAS  Google Scholar 

  • Pfundt R, Wingens M, Bergers M, Zweers M, Frenken M, Schalkwijk J (2000) TNF-alpha and serum induce SKALP/elafin gene expression in human keratinocytes by a p38 MAP kinase-dependent pathway. Arch Dermatol Res 292:180–187

    Article  PubMed  CAS  Google Scholar 

  • Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  PubMed  CAS  Google Scholar 

  • Putsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Ritonja A, Kopitar M, Jerala R, Turk V (1989) Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Lett 255:211–214

    Article  PubMed  CAS  Google Scholar 

  • Rudolph B, Podschun R, Sahly H, Schubert S, Schröder JM, Harder J (2006) Identification of RNase 8 as a novel human antimicrobial protein. Antimicrob Agents Chemother 50:3194–3196

    Article  PubMed  CAS  Google Scholar 

  • Sahly H, Schubert S, Harder J, Rautenberg P, Ullmann U, Schroder J, Podschun R (2003) Burkholderia is highly resistant to human Beta-defensin 3. Antimicrob Agents Chemother 47:1739–1741

    Article  PubMed  CAS  Google Scholar 

  • Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–526

    Article  PubMed  CAS  Google Scholar 

  • Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Fellermann K, Fritz P, Wiedow O, Stange EF, Wehkamp J (2007) Attenuated induction of epithelial and leukocyte serine antiproteases elafin and secretory leukocyte protease inhibitor in Crohn’s disease. J Leukoc Biol 81:907–915

    Article  PubMed  CAS  Google Scholar 

  • Schröder JM, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31:645–651

    Article  PubMed  Google Scholar 

  • Shaykhiev R, Beisswenger C, Kandler K, Senske J, Puchner A, Damm T, Behr J, Bals R (2005) Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 289:L842–L848

    Article  PubMed  CAS  Google Scholar 

  • Simpson AJ, Maxwell AI, Govan JR, Haslett C, Sallenave JM (1999) Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett 452:309–313

    Article  PubMed  CAS  Google Scholar 

  • Simpson AJ, Wallace WA, Marsden ME, Govan JR, Porteous DJ, Haslett C, Sallenave JM (2001) Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection. J Immunol 167:1778–1786

    PubMed  CAS  Google Scholar 

  • Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BA, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BF, McCray PB Jr (1998) Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci USA 95:14961–14966

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236

    Article  PubMed  CAS  Google Scholar 

  • Soferman R (2006) Immunopathophysiologic mechanisms of cystic fibrosis lung disease. Isr Med Assoc J 8:44–48

    PubMed  CAS  Google Scholar 

  • Sohnle PG, Hunter MJ, Hahn B, Chazin WJ (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis 182:1272–1275

    Article  PubMed  CAS  Google Scholar 

  • Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N (2003) Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 170:5583–5589

    PubMed  CAS  Google Scholar 

  • Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959

    Article  PubMed  CAS  Google Scholar 

  • Sorensen OE, Thapa DR, Roupe KM, Valore EV, Sjobring U, Roberts AA, Schmidtchen A, Ganz T (2006) Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest 116:1878–1885

    Article  PubMed  CAS  Google Scholar 

  • Taggart CC, Greene CM, Smith SG, Levine RL, McCray PB Jr, O’Neill S, McElvaney NG (2003) Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Immunol 171:931–937

    PubMed  CAS  Google Scholar 

  • Tomita T, Hitomi S, Nagase T, Matsui H, Matsuse T, Kimura S, Ouchi Y (2000) Effect of ions on antibacterial activity of human beta defensin 2. Microbiol Immunol 44:749–754

    PubMed  CAS  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214

    PubMed  CAS  Google Scholar 

  • Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB Jr, Ganz T (1998) Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 101:1633–1642

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Agerberth B, Lothgren A, Almstedt A, Johansson J (1998) Apolipoprotein A-I binds and inhibits the human antibacterial/cytotoxic peptide LL-37. J Biol Chem 273:33115–33118

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Harder J, Wehkamp K, Wehkamp-von Meissner B, Schlee M, Enders C, Sonnenborn U, Nuding S, Bengmark S, Fellermann K, Schröder JM, Stange EF (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 72:5750–5758

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Harder J, Weichenthal M, Mueller O, Herrlinger KR, Fellermann K, Schröder JM, Stange EF (2003) Inducible and constitutive beta-defensins are differentially expressed in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 9:215–223

    Article  PubMed  Google Scholar 

  • Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, Herrlinger KR, Stallmach A, Noack F, Fritz P, Schröder JM, Bevins CL, Fellermann K, Stange EF (2004) NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 53:1658–1664

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, Feathers RW, Chu H, Lima H Jr, Fellermann K, Ganz T, Stange EF, Bevins CL (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 102:18129–18134

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Schwind B, Herrlinger KR, Baxmann S, Schmidt K, Duchrow M, Wohlschlager C, Feller AC, Stange EF, Fellermann K (2002) Innate immunity and colonic inflammation: enhanced expression of epithelial alpha-defensins. Dig Dis Sci 47:1349–1355

    Article  PubMed  CAS  Google Scholar 

  • Weinberg A, Krisanaprakornkit S, Dale BA (1998) Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 9:399–414

    Article  PubMed  CAS  Google Scholar 

  • Weinberg ED (2001) Human lactoferrin: a novel therapeutic with broad spectrum potential. J Pharm Pharmacol 53:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Wiedow O, Harder J, Bartels J, Streit V, Christophers E (1998) Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem Biophys Res Commun 248:904–909

    Article  PubMed  CAS  Google Scholar 

  • Wiedow O, Schröder JM, Gregory H, Young JA, Christophers E (1990) Elafin: an elastase-specific inhibitor of human skin. Purification, characterization, and complete amino acid sequence. J Biol Chem 265:14791–14795

    PubMed  CAS  Google Scholar 

  • Wilde CG, Griffith JE, Marra MN, Snable JL, Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264:11200–11203

    PubMed  CAS  Google Scholar 

  • Wingens M, Bergen BH van, Hiemstra PS, Meis JF, Vlijmen-Willems IM van, Zeeuwen PL, Mulder J, Kramps HA, Ruissen F van, Schalkwijk J (1998) Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes. J Invest Dermatol 111:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the innate immunity of tissues. Immunity 21:241–254

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Hoover DM, Yang D, Boulegue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci USA 100:8880–8885

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  • Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 120:810–816

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dyer KD, Rosenberg HF (2002) RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res 30:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Yu W, He T, Yu J, Caffrey RE, Dalmasso EA, Fu S, Pham T, Mei J, Ho JJ, Zhang W, Lopez P, Ho DD (2002) Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298:995–1000

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2006) Interleukin-22, a T(H) 17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445: 648–651

    Article  PubMed  CAS  Google Scholar 

  • Zucht HD, Grabowsky J, Schrader M, Liepke C, Jurgens M, Schulz-Knappe P, Forssmann WG (1998) Human beta-defensin-1: a urinary peptide present in variant molecular forms and its putative functional implication. Eur J Med Res 3:315–323

    PubMed  CAS  Google Scholar 

  • Zudaire E, Martinez A, Cuttitta F (2003) Adrenomedullin and cancer. Regul Pept 112:175–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gläser, R., Harder, J., Schröder, JM. (2008). Antimicrobial Peptides as First-Line Effector Molecules of the Human Innate Immune System. In: Heine, H. (eds) Innate Immunity of Plants, Animals, and Humans. Nucleic Acids and Molecular Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73930-2_9

Download citation

Publish with us

Policies and ethics