Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 319))

Abstract

B cell responses are a major immune protective mechanism induced against a large variety of pathogens. Technical advances over the last decade, particularly in the isolation and characterization of B cell subsets by multicolor flow cytometry, have demonstrated the multifaceted nature of pathogen-induced B cell responses. In addition to participation by the major follicular B cell population, three B cell subsets are now recognized as key contributors to pathogen-induced host defenses: marginal zone (MZ) B cells, B-1a and B-1b cells. Each of these subsets seems to require unique activation signals and to react with distinct response patterns. Here we provide a brief review of the main developmental and functional features of these B cell subsets. Furthermore, we outline our current understanding of how each subset contributes to the humoral response to influenza virus infection and what regulates their differential responses. Understanding of the multilayered nature of the humoral responses to infectious agents and the complex innate immune signals that shape pathogen-specific humoral responses are likely at the heart of enhancing our ability to induce appropriate and long-lasting humoral responses for prophylaxis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BCR:

B cell receptor

d.p.c:

Days postconception

MZ:

Marginal zone

TNP:

Trinitrophenyl

References

  • Alugupalli KR, Leong JM, Woodland RT, Muramatsu M, Honjo T, Gerstein RM (2004) B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity 21:379–390.

    Article  PubMed  CAS  Google Scholar 

  • Ansel KM, Harris RB, Cyster JG (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16:67–76.

    Article  PubMed  CAS  Google Scholar 

  • Attanavanich K, Kearney JF (2004) Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J Immunol 172:803–811.

    PubMed  CAS  Google Scholar 

  • Bachmann MF, Zinkernagel RM (1997) Neutralizing antiviral B cell responses. Annu Rev Immunol 15:235–270.

    Article  PubMed  CAS  Google Scholar 

  • Basler CF, Reid AH, Dybing JK, Janczewski TA, Fanning TG, Zheng H et al (2001) From the cover: sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A 98:2746–2751.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarth N (2000) A two-phase model of B-cell activation. Immunol Rev 176:171–180.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarth N (2004) B-cell immunophenotyping. Methods Cell Biol 75:643–662.

    Article  PubMed  Google Scholar 

  • Baumgarth N, Kelso A (1996) In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue. J Virol 70:4411–4418.

    PubMed  CAS  Google Scholar 

  • Baumgarth N, Herman OC, Jager GC, Brown L, Herzenberg LA, Herzenberg LA (1999) Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc Natl Acad Sci U S A 96:2250–2255.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarth N, Chen J, Herman OC, Jager GC, Herzenberg LA (2000a) The role of B-1 and B-2 cells in immune protection from influenza virus infection. Curr Top Microbiol Immunol 252:163–169.

    PubMed  CAS  Google Scholar 

  • Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J (2000b) B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 192:271–280.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarth N, Tung JW, Herzenberg LA (2005) Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 26:347–362.

    Article  PubMed  CAS  Google Scholar 

  • Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 20:253–300.

    Article  PubMed  CAS  Google Scholar 

  • Bernard A, Coitot S, Bremont A, Bernard G (2005) T and B cell cooperation: a dance of life and death. Transplantation 79:S8–S11.

    Article  PubMed  CAS  Google Scholar 

  • Bikah G, Carey J, Ciallella JR, Tarakhovsky A, Bondada S (1996) CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science 274:1906–1909.

    Article  PubMed  CAS  Google Scholar 

  • Boes M, Esau C, Fischer MB, Schmidt T, Carroll M, Chen J (1998a) Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J Immunol 160:4776–4787.

    PubMed  CAS  Google Scholar 

  • Boes M, Prodeus AP, Schmidt T, Carroll MC, Chen J (1998b) A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J Exp Med 188:2381–2386.

    Article  PubMed  CAS  Google Scholar 

  • Bridges CB, Fukuda K, Cox NJ, Singleton JA (2001) Prevention and control of influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 50:1–44.

    CAS  Google Scholar 

  • Carvalho TL, Mota-Santos T, Cumano A, Demengeot J, Vieira P (2001) Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 7(-/)- mice. J Exp Med 194:1141–1150.

    Article  PubMed  CAS  Google Scholar 

  • Chang WLW, Coro ES, Rau FC, Xiao Y, Erle DJ, Baumgarth N (2007) Influenza virus infection causes global respiratory tract B cell response modulation via innate immune signals. J Immunology 178:1457–1467.

    CAS  Google Scholar 

  • Cinamon G, Matloubian M, Lesneski MJ, Xu Y, Low C, Lu T et al (2004) Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol 5:713–720.

    Article  PubMed  CAS  Google Scholar 

  • Coro ES, Chang WL, Baumgarth N (2006) Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. J Immunol 176:4343–4351.

    PubMed  CAS  Google Scholar 

  • Dammers PM, Kroese FG (2005) Recruitment and selection of marginal zone B cells is independent of exogenous antigens. Eur J Immunol 35:2089–2099.

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC (2000) Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 18:561–592.

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC, Topham DJ, Tripp RA, Cardin RD, Brooks JW, Stevenson PG (1997) Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol Rev 159:105–117.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AR, Youd ME, Corley RB (2004) Marginal zone B cells transport and deposit IgM-containing immune complexes onto follicular dendritic cells. Int Immunol 16:1411–1422.

    Article  PubMed  CAS  Google Scholar 

  • Fink K, Lang KS, Manjarrez-Orduno N, Junt T, Senn BM, Holdener M et al (2006) Early type I interferon-mediated signals on B cells specifically enhance antiviral humoral responses. Eur J Immunol 36:2094–2105.

    Article  PubMed  CAS  Google Scholar 

  • Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC (1998) Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8:683–691.

    Article  PubMed  CAS  Google Scholar 

  • Forster I, Rajewsky K (1990) The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc Natl Acad Sci U S A 87:4781–4784.

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa H, Tsuru S, Rtaniguchi M, Zinnaka Y, Nomoto K (1987) Protective mechanisms against pulmonary infection with influenza virus. I. Relative contribution of polymorphonuclear leukocytes and of alveolar macrophages to protection during the early phase of intranasal infection. J Gen Virol 68:425–432.

    Article  PubMed  Google Scholar 

  • Garcia-Sastre A, Durbin RK, Zheng H, Palese P, Gertner R, Levy DE, Durbin JE (1998) The role of interferon in influenza virus tissue tropism. J Virol 72:8550–8558.

    PubMed  CAS  Google Scholar 

  • Gerhard W, Mozdzanowska K, Furchner M, Washko G, Maiese K (1997) Role of the B-cell response in recover o mice from primary influenza virus infection. Immunol Rev 159:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Godin IE, Garcia-Porrero JA, Coutinho A, Dieterlen-Lievre F, Marcos MA (1993) Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364:67–70.

    Article  PubMed  CAS  Google Scholar 

  • Goodnow CC, Cyster JG, Hartley SB, Bell SE, Cooke MP, Healy JI et al (1995) Self-tolerance checkpoints in B lymphocyte development. Adv Immunol 59:279–368.

    Article  PubMed  CAS  Google Scholar 

  • Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, Fagarasan S (2006) Regulation of B1 cell migration by signals through Toll-like receptors. J Exp Med 203:2541–2550.

    Article  PubMed  CAS  Google Scholar 

  • Haas KM, Poe JC, Steeber DA, Tedder TF (2005) B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 23:7–18.

    Article  PubMed  CAS  Google Scholar 

  • Hao Z, Rajewsky K (2001) Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J Exp Med 194:1151–1164.

    Article  PubMed  CAS  Google Scholar 

  • Hardy RR, Hayakawa K (1991) A developmental switch in B lymphopoiesis. Proc Natl Acad Sci U S A 88:11550–11554.

    Article  PubMed  CAS  Google Scholar 

  • Hardy RR, Hayakawa K (2001) B cell development pathways. Annu Rev Immunol 19:595–621.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa K, Hardy RR, Herzenberg LA, Herzenberg LA (1985) Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J Exp Med 161:1554–1568.

    Article  PubMed  CAS  Google Scholar 

  • Heer AK, Shamshiev A, Donda A, Uematsu S, Akira S, Kopf M, Marsland BJ (2007) TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J Immunol 178:2182–2191.

    PubMed  CAS  Google Scholar 

  • Heltemes-Harris L, Liu X, Manser T (2005) An antibody VH gene that promotes marginal zone B cell development and heavy chain allelic inclusion. Int Immunol 17:1447–1461.

    Article  PubMed  CAS  Google Scholar 

  • Herzenberg LA, Stall AM, Lalor PA, Sidman C, Moore WA, Parks DR (1986) The Ly-1 B cell lineage. Immunol Rev 93:81–102.

    Article  PubMed  CAS  Google Scholar 

  • Herzenberg LA, Kantor AB, Herzenberg LA (1992) Layered evolution in the immune system. A model for the ontogeny and development of multiple lymphocyte lineages. Ann N Y Acad Sci 651:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Herzenberg LA, Tung JW (2006) B cell lineages: documented at last! Nat Immunol 7:225–226.

    Article  PubMed  CAS  Google Scholar 

  • Hippen KL, Tze LE, Behrens TW (2000) CD5 maintains tolerance in anergic B cells. J Exp Med 191:883–890.

    Article  PubMed  CAS  Google Scholar 

  • Hogan RJ, Usherwood EJ, Zhong W, Roberts AA, Dutton RW, Harmsen AG, Woodland DL (2001) Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J Immunol 166:1813–1822.

    PubMed  CAS  Google Scholar 

  • Kaminski DA, Stavnezer J (2006) Enhanced IgA class switching in marginal zone and B1 B cells relative to follicular/B2 B cells. J Immunol 177:6025–6029.

    PubMed  CAS  Google Scholar 

  • Kantor AB, Herzenberg LA (1993) Origin of murine B cell lineages. Annu Rev Immunol 11:501–538.

    Article  PubMed  CAS  Google Scholar 

  • Kavaler J, Caton AJ, Staudt LM, Gerhard W (1991) A B cell population that dominates the primary response to influenza virus hemagglutinin does not participate in the memory response. Eur J Immunol 21:2687–2695.

    Article  PubMed  CAS  Google Scholar 

  • Kantor AB, Stall AM, Adams S, Watanabe K, Herzenberg LA (1995) De novo development and self-replenishment of B cells. Int Immunol 7:55–68.

    Article  PubMed  CAS  Google Scholar 

  • Kavaler J, Caton AJ, Staudt LM, Schwartz D, Gerhard W (1990) A set of closely related antibodies dominates the primary antibody response to the antigenic site CB of the A/PR/8/34 influenza virus hemagglutinin. J Immunol 145:2312–2321.

    PubMed  CAS  Google Scholar 

  • Kawikova I, Paliwal V, Szczepanik M, Itakura A, Fukui M, Campos RA et al (2004) Airway hyper-reactivity mediated by B-1 cell immunoglobulin M antibody generating complement C5a at 1 day post-immunization in a murine hapten model of non-atopic asthma. Immunology 113:234–245.

    Article  PubMed  CAS  Google Scholar 

  • Kenny JJ, Yaffe LJ, Ahmed A, Metcalf ES (1983) Contribution of Lyb 5+ and Lyb 5–B cells to the primary and secondary phosphocholine-specific antibody response. J Immunol 130:2574–2579.

    PubMed  CAS  Google Scholar 

  • Kikuchi K, Kondo M (2006) Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth. Proc Natl Acad Sci U S A 103:17852–17857.

    Article  PubMed  CAS  Google Scholar 

  • Knoops L, Louahed J, Renauld JC (2004) IL-9-induced expansion of B-1b cells restores numbers but not function of B-1 lymphocytes in xid mice. J Immunol 172:6101–6106.

    PubMed  CAS  Google Scholar 

  • Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K (2004) Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117:787–800.

    Article  PubMed  CAS  Google Scholar 

  • Kroese FG, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA (1989) Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol 1:75–84.

    Article  PubMed  CAS  Google Scholar 

  • Lalor PA, Herzenberg LA, Adams S, Stall AM (1989a) Feedback regulation of murine Ly-1 B cell development. Eur J Immunol 19:507–513.

    Article  PubMed  CAS  Google Scholar 

  • Lalor PA, Stall AM, Adams S, Herzenberg LA (1989b) Permanent alteration of the murine Ly-1 B repertoire due to selective depletion of Ly-1 B cells in neonatal animals. Eur J Immunol 19:501–506.

    Article  PubMed  CAS  Google Scholar 

  • Le Bon A, Thompson C, Kamphuis E, Durand V, Rossmann C, Kalinke U, Tough DF (2006) Cutting edge: enhancement of antibody responses through direct stimulation of B and T cells by type I IFN. J Immunol 176:2074–2078.

    PubMed  Google Scholar 

  • Lewis GK, Goodman JW, Ranken R (1978) Activation of B cell subsets by T-dependent and T-independent antigens. Adv Exp Med Biol 98:339–356.

    PubMed  CAS  Google Scholar 

  • Lopes-Carvalho T, Foote J, Kearney JF (2005) Marginal zone B cells in lymphocyte activation and regulation. Curr Opin Immunol 17:244–250.

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Oliver AM, Kearney JF (2001) Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14:617–629.

    Article  PubMed  CAS  Google Scholar 

  • Meffre E, Casellas R, Nussenzweig MC (2000) Antibody regulation of B cell development. Nat Immunol 1:379–385.

    Article  PubMed  CAS  Google Scholar 

  • Montecino-Rodriguez E, Leathers H, Dorshkind K (2006) Identification of a B-1 B cell-specified progenitor. Nat Immunol 7:293–301.

    Article  PubMed  CAS  Google Scholar 

  • Mozdzanowska K, Furchner M, Maiese K, Gerhard W (1997) CD4+ T cells are ineffective in clearing a pulmonary infection with influenza type A virus in the absence of B cells. Virology 239:217–225.

    Article  PubMed  CAS  Google Scholar 

  • Mozdzanowska K, Maiese K, Gerhard W (2000) Th cell-deficient mice control influenza virus infection more effectively than Th- and B cell-deficient mice: evidence for a Th-independent contribution by B cells to virus clearance. J Immunol 164:2635–2643.

    PubMed  CAS  Google Scholar 

  • Murakami M, Tsubata T, Shinkura R, Nisitani S, Okamoto M, Yoshioka H et al (1994) Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse. J Exp Med 180:111–121.

    Article  PubMed  CAS  Google Scholar 

  • Noelle RJ (1996) CD40 and its ligand in host defense. Immunity 4:415–419.

    Article  PubMed  CAS  Google Scholar 

  • Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinkernagel RM (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–2159.

    Article  PubMed  CAS  Google Scholar 

  • Pasare C, Medzhitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438:364–368.

    Article  PubMed  CAS  Google Scholar 

  • Paus D, Phan TG, Chan TD, Gardam S, Basten A, Brink R (2006) Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J Exp Med 203:1081–1091.

    Article  PubMed  CAS  Google Scholar 

  • Pecquet SS, Ehrat C, Ernst PB (1992a) Enhancement of mucosal antibody responses toSalmonella typhimurium and the microbial hapten phosphorylcholine in mice with X-linked immunodeficiency by B-cell precursors from the peritoneal cavity. Infect Immun 60:503–509.

    PubMed  CAS  Google Scholar 

  • Pecquet SS, Zazulak J, Simpson SD, Ernst PB (1992b) Reconstitution of xid mice with donor cells enriched for CD5+ B cells restores contrasuppression. Ann N Y Acad Sci 651:173–175.

    Article  PubMed  CAS  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5 -phosphates. Science 314:997–1001.

    Article  PubMed  CAS  Google Scholar 

  • Pillai S, Cariappa A, Moran ST (2005) Marginal zone B cells. Annu Rev Immunol 23:161–196.

    Article  PubMed  CAS  Google Scholar 

  • Reading PC, Morey LS, Crouch EC, Anders EM (1997) Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J Virol 71:8204–8212.

    PubMed  CAS  Google Scholar 

  • Renegar KB, Small PA Jr (1991a) Immunoglobulin A mediation of murine nasal anti-influenza virus immunity. J Virol 65:2146–2148.

    PubMed  CAS  Google Scholar 

  • Renegar KB, Small PA Jr (1991b) Passive transfer of local immunity to influenza virus infection by IgA antibody. J Immunol 146:1972–1978.

    PubMed  CAS  Google Scholar 

  • Rolink AG, Schaniel C, Andersson J, Melchers F (2001) Selection events operating at various stages in B cell development. Curr Opin Immunol 13:202–207.

    Article  PubMed  CAS  Google Scholar 

  • Ruprecht CR, Lanzavecchia A (2006) Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 36:810–816.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz N, Kurrer M, Bachmann MF, Kopf M (2005) Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol 79:6441–6448.

    Article  PubMed  CAS  Google Scholar 

  • Sha Z, Compans RW (2000) Induction of CD4+ T-cell-independent immunoglobulin responses by inactivated influenza virus. J Virol 74:4999–5005.

    Article  PubMed  CAS  Google Scholar 

  • Song H, Cerny J (2003) Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J Exp Med 198:1923–1935.

    Article  PubMed  CAS  Google Scholar 

  • Stall AM, Adams S, Herzenberg LA, Kantor AB (1992) Characteristics and development of the murine B-1b (Ly-1 B sister) cell population. Ann N Y Acad Sci 651:33–43.

    Article  PubMed  CAS  Google Scholar 

  • Szczepanik M, Akahira-Azuma M, Bryniarski K, Tsuji RF, Kawikova I, Ptak W et al (2003) B-1 B cells mediate required early T cell recruitment to elicit protein-induced delayed-type hypersensitivity. J Immunol 171:6225–6235.

    PubMed  CAS  Google Scholar 

  • Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, Garcia-Sastre A (2000) Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol 74:7989–7996.

    Article  PubMed  CAS  Google Scholar 

  • Tarlinton DM, McLean M, Nossal GJ (1995) B1 and B2 cells differ in their potential to switch immunoglobulin isotype. Eur J Immunol 25:3388–3393.

    Article  PubMed  CAS  Google Scholar 

  • Virelizier JL, Postlethwaite R, Schild GC, Allison AC (1974) Antibody responses to antigenic determinants of influenza virus hemagglutinin. I. Thymus dependence of antibody formation and thymus independence of immunological memory. J Exp Med 140:1559–1570.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, Garcia-Sastre A (2000) Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol 74:11566–11573.

    Article  PubMed  CAS  Google Scholar 

  • Wells SM, Kantor AB, Stall AM (1994) CD43 (S7) expression identifies peripheral B cell subsets. J Immunol 153:5503–5515.

    PubMed  CAS  Google Scholar 

  • Yang Y, Tung JW, Ghosn EE, Herzenberg LA, Herzenberg LA (2007) Division and differentiation of natural antibody-producing cells in mouse spleen. Proc Natl Acad Sci U S A 104:4542–4546.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumgarth, N., Choi, Y.S., Rothaeusler, K., Yang, Y., Herzenberg, L.A. (2008). B Cell Lineage Contributions to Antiviral Host Responses. In: Manser, T. (eds) Specialization and Complementation of Humoral Immune Responses to Infection. Current Topics in Microbiology and Immunology, vol 319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73900-5_3

Download citation

Publish with us

Policies and ethics