Skip to main content

Molecular Rearrangements in Intense Laser Fields

  • Chapter
  • 907 Accesses

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 89))

Abstract

Irradiation of molecules by strong optical fields readily leads to rupture of one or more molecular bonds. Such rupture is a consequence of field-induced multiple electron ejection from the molecule, leaving behind two or more ionic cores that experience strong Coulombic repulsion. The resulting Coulomb explosion occurs on ultrafast time scales. It now appears to be the case that bond formation processes can also occur on similar, ultrafast time scales. Ultrafast intramolecular rearrangements leading to bond formation upon intense field irradiation of a series of linear alcohols has been experimentally observed. The rearrangement process gives rise to an unusual ionic fragment, the hydrogen molecular ion, which is formed with substantial amount of kinetic energy. Results of polarization dependence measurements confirm that such rearrangement, leading to bond formation, occurs within the duration of a 100 fs-long laser pulse and that the unimolecular process is coaxed by the strong optical field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.T. Bowers, Gas Phase Ion Chemisty (Springer, Berlin, 1996)

    Google Scholar 

  2. D. Mathur Physics of Ion Impact Phenomena (Springer, Berlin, 1991)

    Google Scholar 

  3. D. Mathur, Phys. Reports 225, 193 (1993)

    Article  ADS  Google Scholar 

  4. D. Mathur, Phys. Reports 391, 1 (2004)

    Article  ADS  Google Scholar 

  5. V.R. Bhardwaj, F.A. Rajgara, K. Vijayalakshmi, V. Kumarappan, D. Mathur, A.K. Sinha, Phys. Rev. A 59, 3105 (1999)

    Article  ADS  Google Scholar 

  6. H.W. Schroder , L. Stein , D. Frohlich , B. Fugger, H. Welling, Appl. Phys. 14, 377 (1977)

    Article  ADS  Google Scholar 

  7. C.B. Moore, J.C. Weisshaar, Annual. Rev. Phys. Chem. 34, 525 (1983)

    Article  ADS  Google Scholar 

  8. A. Yariv, J. Appl. Phys. 36, 388. (1965)

    Google Scholar 

  9. P.M. French, Rep. Prog. Phys. 58, 169 (1985)

    Article  ADS  Google Scholar 

  10. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, New York 1996)

    Google Scholar 

  11. A.H. Zewail, Femtochemistry – Ultrafast Dynamics of the Chemical Bond, vols. I and II (World Scientific, Singapore, 1994)

    Google Scholar 

  12. R.W. Schoenlein, L.A. Peteanu, C.V. Shank: Science 254, 412 (1991)

    Article  ADS  Google Scholar 

  13. E.W. Diau, J. Casanova , J.D. Roberts, A.H. Zewail, Proc. Natl. Acad. Sci. USA 97, 1376 (2000)

    Article  ADS  Google Scholar 

  14. D. Zhoung, A. Dhouhal, A.H. Zewail, Proc. Natl. Acad. Sci. USA 97, 14056 (2000)

    Article  ADS  Google Scholar 

  15. S. Nandi, A. Sanov, N. Delaney, J. Faeder, R. Parson, W.C. Lineberger, J. Phys. Chem. 102, 8827 (1998)

    Google Scholar 

  16. H. Rabitz, Science 299 525 (2003)

    Article  Google Scholar 

  17. S.A. Rice, Science 258, 412 (1992); W.S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993); R.N. Zare, Science 279, 1875 (1998); R.J. Gordon, L. Zhu, T. Seideman, Acc. Chem. Res. 32, 1007 (1999); H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, Science 288, 824 (2000)

    Article  ADS  Google Scholar 

  18. G.K. Paramonov, V.A. Savva, Dokl. Akad. Nauk. SSSR Ser. Fiz. 48, 449 (1984); D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985); M. Shapiro, P. Brumer, Chem. Phys. Lett. 126, 541 (1986); U. Gaubatz, et al., Chem. Phys. Lett. 149, 463 (1988); A.P. Peirce, M. Dahleh, H. Rabitz, Phys. Rev. A. 12, 9950 (1988)

    Google Scholar 

  19. W. Yang, M.R. Fetterman, D. Goswami, W.S. Warren, J. Opt. Comm. 21, 694 (2000)

    Google Scholar 

  20. A.M. Weiner, Rev. Sci. Instrum., 71, 1929 (2000).

    Article  ADS  Google Scholar 

  21. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber Science 282, 919 (1998); T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, Nature 414, 57 (2001)

    Article  ADS  Google Scholar 

  22. R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992)

    Article  ADS  Google Scholar 

  23. C. Daniel, J. Full, L. Gonzàlez, C. Lupulescu, J. Manz, A. Merli, T. Vajda, L. Wöste, Science 299 536 (2003)

    Article  ADS  Google Scholar 

  24. P.F. Moulton, Opt. News 8, 9 (1982); P.F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986); D.E. Spence, P.N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991)

    Article  Google Scholar 

  25. D. Strickland, G. Mourou, Opt. Commun., 56, 219 (1985)

    Article  ADS  Google Scholar 

  26. J.D. Bonlie, F. Patterson, D. Price, B. White, P. Springer, Appl. Phys. B 70, S155 (2000)

    Article  ADS  Google Scholar 

  27. V.P. Krainov, Multiphoton Processes in Atoms (Springer, Berlin, 2000)

    Google Scholar 

  28. A.D. Bandrauk, Molecules in Laser Fields (Marcel Dekker, New York, 1993)

    Google Scholar 

  29. R.D. Levine, R.B. Bernstein, Molecular Reaction Dynamics (Oxford University Press, New York, 1974)

    Google Scholar 

  30. H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)

    Article  ADS  Google Scholar 

  31. G. Ravindra Kumar, P. Gross, C.P. Safvan, F.A. Rajgara, D. Mathur, J. Phys. B 29 L95 (1996)

    Article  Google Scholar 

  32. F. Rosca-Pruna, M.J.J. Vrakking, Phys. Rev. Lett. 87, 153902 (2001)

    Article  ADS  Google Scholar 

  33. A.D. Bandrauk, E.S. Sedik, C.F. Matta, J. Chem. Phys. 121, 7764 (2004)

    Article  ADS  Google Scholar 

  34. E. Constant, H. Stapelfeldt, P.B. Corkum, Phys. Rev. Lett. 76, 4140, (1996)

    Article  ADS  Google Scholar 

  35. H. Shen, J.P. Dussault, A.D. Bandrauk, Chem. Phys. Lett. 221, 498 (1994)

    Article  ADS  Google Scholar 

  36. F.W. McLafferty, Anal. Chem. 31, 82 (1959)

    Article  Google Scholar 

  37. M.J. DeWitt, R.J. Levis, J Chem. Phys. 110, 11368 (1999)

    Article  ADS  Google Scholar 

  38. R.J. Levis, G.M. Menkir, H. Rabitz, Science 292 709 (2001)

    Article  ADS  Google Scholar 

  39. C. Dion, S. Chelkowski, A.D. Bandrauk, H. Umeda, Y. Fujimura, J. Chem. Phys. 105, 9083 (1996)

    Article  ADS  Google Scholar 

  40. S. Chelkowski, A.D. Bandrauk, Chem. Phys. Lett. 233, 185 (1995)

    Article  ADS  Google Scholar 

  41. A. Morimoto, T. Yatsuhashi, T. Shimada, S. Kumazaki, K. Yoshihara, H. Inoue, J. Phys. Chem. A 105, 880 (2001)

    Article  Google Scholar 

  42. A. Hishikawa, H. Hasegawa, K. Yamanouchi, J. Elect. Spec. Relat. Phenom. 141 195 – 200 (2004)

    Google Scholar 

  43. A. Hishikawa, H. Hasegawa, K. Yamanouchi, Physica Scripta T, 110 108 (2004)

    Article  ADS  Google Scholar 

  44. S. Sakabe, K. Nishihara, N. Nakashima, J. Kou, S. Shimizu, V. Zhakhovskii, H. Amitani, F. Sato, Phys. of Plasmas 8, 2517 (2001)

    Article  ADS  Google Scholar 

  45. L.T.R. Trafton, S. Geballe, J. Miller, J. Tennyson, G.E. Ballester, Astrophys. J. 405 761 (1993)

    Article  ADS  Google Scholar 

  46. M. Krishnamurthy, F.A. Rajgara, D. Mathur, J. Chem. Phys. 121, 9765 (2004)

    Article  ADS  Google Scholar 

  47. Y. Furukawa, K. Hoshina, K. Hoshina, K. Yamanouchi, H. Nakano, Chem. Phys. Lett. 414, 117 (2005)

    Article  ADS  Google Scholar 

  48. T. Okino, Y. Furukawa, P. Liu, T. Ichikawa, R. Itakura, K. Hoshina, K. Yamanouchi, H. Nakano, Chem. Phys. Lett. 419, 223 (2006)

    Article  ADS  Google Scholar 

  49. F.A. Rajgara, M. Krishnamurthy, D. Mathur, Phys. Rev. A 68, 023407 (2003)

    Article  ADS  Google Scholar 

  50. F.A. Rajgara, M. Krishnamurthy, D. Mathur, J. Chem. Phys. 119 12224 (2003)

    Article  ADS  Google Scholar 

  51. A.D. Bandrauk, Molecules in Laser Fields (Marcel Dekker, New York, 1994)

    Google Scholar 

  52. S. Banerjee, G.R. Kumar, D. Mathur, J. Phys. B 32 4277 (1999)

    Article  ADS  Google Scholar 

  53. HyperChem, Molecule Modeling System, Release 5.11 for Windows, Hypercube Inc. (1999)

    Google Scholar 

  54. A.N. Markevitch, D.A. Romanov, S.M. Smith, R.J. Levis, Phys. Rev. Lett. 96, 163002 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krishnamurthy, M., Mathur, D. (2008). Molecular Rearrangements in Intense Laser Fields. In: Progress in Ultrafast Intense Laser Science III. Springer Series in Chemical Physics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73794-0_4

Download citation

Publish with us

Policies and ethics