Skip to main content

The Transport of Relativistic, Laser-Produced Electrons in Matter – Part 1

  • Chapter

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 89))

Abstract

This chapter gives a review of experimental results, which have been obtained in the last 10 years concerning the generation of very large relativistic currents of “fast” electrons in laser-matter interactions at ultra high intensities, and their propagation in matter. This subject is a key issue in the research concerning the new “fast ignition” approach to inertial confinement fusion. In particular, this chapter deals with the problems of fast electron generation (conversion efficiency of laser energy into energy of the fast electron beam, scaling of fast electron “temperature” vs. laser intensity; shape of the electron distribution function) and with the discussion of collisional effects vs. collective effects (due to electric and magnetic fields) in propagation, including the dependence of collective effects on material characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Tabak, et al., Phys. Plasmas, 1, 1626 (1994)

    Article  ADS  Google Scholar 

  2. S. Atzeni, Jpn. J. Appl. Phys. 34, 1980 (1995)

    Article  ADS  Google Scholar 

  3. K.A. Tanaka, R. Kodama, et al.,Phys. Plasmas, 7, 2014 (2000); R. Kodama, K. Mima, et al., Phys. Plasmas, 8, 2268 (2001)

    Google Scholar 

  4. P.A. Norreys, K.L. Lancaster, et al., Phys. Plasmas, 11, 2746 (2004); P.A. Norreys, A.P. Fews, et al., Plasma Phys. Control. Fusion 40, 175 (1998)

    Google Scholar 

  5. J.M. Hill, M.H. Key et al., Phys. Plasmas, 12, 082304 (2005); R. Freeman, et al., J. Quant. Spectrosc. Rad. Trans., 81, 183 (2003); R.P.J. Town, et al. Nucl. Instrum. Meth. A, 544, 61 (2005)

    Article  ADS  Google Scholar 

  6. L.M. Chen, J. Zhang, et al., Phys. Rev. Lett. 87, 225001 (2001); Y.T. Li, J. Zhang, et al., Phys. Rev. E, 69, 036405 (2004)

    Article  ADS  Google Scholar 

  7. R. Kodama, et al., Nature 412 798 (2001)

    Article  ADS  Google Scholar 

  8. J.A. Koch et al., Phys. Rev. E, 65, 016410 (2001)

    Article  ADS  Google Scholar 

  9. F. Pisani et al., Phys. Rev. E, 62, R5927 (2000)

    Article  ADS  Google Scholar 

  10. F. Beg et al., Phys. Plasmas, 4, 447 (1997)

    Article  ADS  Google Scholar 

  11. M. Key et al., Phys. Plasmas, 5, 1966 (1998)

    Article  ADS  Google Scholar 

  12. T. Hall et al., Phys. Rev. Lett., 81, 1003 (1998)

    Article  ADS  Google Scholar 

  13. J.J. Santos et al., Phys. Rev. Lett., 89, 025001 (2002) (originally OTR emission has been described by I. Frank and V. Ginzburg, J. Phys. USSR 9, 1945)

    Article  ADS  Google Scholar 

  14. R.R. Freeman, D. Batani, S. Baton, M. Key and R. Stephens, Fusion Sci. Technol., 49, 297 (2006)

    Google Scholar 

  15. K. Wharton et al., Phys. Rev. Lett., 81, 822 (1998)

    Article  ADS  Google Scholar 

  16. F. Brunel, Phys. Rev. Lett., 59, 52 (1987)

    Article  ADS  Google Scholar 

  17. C.E. Max “Physics of the coronal plasma in laser fusion targets”, in Laser-Plasma Interactions, edited by R. Balian, J.C. Adam, North Holland Pub., Amsterdam (1982)

    Google Scholar 

  18. William L. Kruer “The Physics of Laser Plasma Interactions” Wokingham: Addison-Wesley (1988).

    Google Scholar 

  19. S.C. Wilks, W.L. Kruer, M. Tabak, and A.B. Langdon, Phys. Rev. Lett, 69, 1383 (1992)

    Article  ADS  Google Scholar 

  20. A.P. Fews et al., Phys. Rev. Lett., 73, 1801 (1994)

    Article  ADS  Google Scholar 

  21. T. Tan et al., Phys. Fluids, 27, 296 (1984)

    Article  ADS  Google Scholar 

  22. E L. Clark, K. Krushelnick, M. Zepf, et al., Phys. Rev. Lett., 85, 1654 (2000)

    Article  ADS  Google Scholar 

  23. J R. Davies, Phys. Rev. E, 65, 026407 (2002)

    Article  ADS  Google Scholar 

  24. D. Batani, Laser Part. Beams, 20, 321 (2002)

    Article  ADS  Google Scholar 

  25. S.R. de Groot et al., Relativistic Kinetic Theory: Principles and Applications, North Holland Publishing Company (1980); D.B. Melrose et al., Journal of Plasma Physics, 62, 233 (1999); T. Phillips et al., Rev. Sci. Instrum., 70, 1213 (1999); P.A. Norreys et al., Phys. Plasmas, 6, 2150 (1999); K.W.D. Ledingham et al., Phys. Rev. Lett., 84, 899 (2000).

    Google Scholar 

  26. M. Manclossi, J.J. Santos, J. Faure, et al., J. Phys. IV, 133, 499 (2006); D. Batani, M. Manclossi, J.J. Santos, et al., Plasma Phys. Contr. Fusion, 48, B211 (2006)

    Google Scholar 

  27. P.K. Patel et al., CLF annual report 2003/2004, p. 36 (2004)

    Google Scholar 

  28. G. Malka and J.L. Miquel, Phys. Rev. Lett., 77, 75 (1996)

    Article  ADS  Google Scholar 

  29. D.W. Forslund et al., Phys Rev A, 11, 679 (1975)

    Article  ADS  Google Scholar 

  30. T. Feurer, W. Theobald, R. Sauerbrey, et al., Phys. Rev. E, 56, 4608 (1997)

    Article  ADS  Google Scholar 

  31. I.H. Hutchinson Principles of Plasma Diagnostics, Cambridge University Press, Cambridge (1987)

    Google Scholar 

  32. A. Bell, et al., Plasma Phys. Control. Fusion, 39, 653 (1997)

    Article  ADS  Google Scholar 

  33. R. Decoste et al., Phys. Fluids, 25, 1699 (1982).

    Article  ADS  Google Scholar 

  34. D. Bond et al., Plasma Physics, 24, 91 (1982)

    Article  ADS  Google Scholar 

  35. D. Batani et al., Phys. Rev. E, 51, 5725 (2000)

    Article  ADS  Google Scholar 

  36. J.R. Davies et al., Phys. Rev. E, 56, 7193 (1997)

    Article  ADS  Google Scholar 

  37. L. Spitzer, The Physics of Fully Ionised Gases, Wiley Interscience, New York (1962)

    Google Scholar 

  38. H.M. Milchberg, R.R. Freeman, S.C. Davey, and R.M. More, Phys. Rev. Lett., 61, 2364 (1988)

    Article  ADS  Google Scholar 

  39. D. Batani, A. Antonicci, F. Pisani, et al., Phys. Rev. E, 65, 066409 (2002)

    Article  ADS  Google Scholar 

  40. J. Davies, Phys. Rev. E, 68, 056404 (2003)

    Article  ADS  Google Scholar 

  41. D. Batani, S.D. Baton, et al., Phys. Rev. Lett., 94, 055004 (2005)

    Article  ADS  Google Scholar 

  42. L. Gremillet et al., Phys. Rev. Lett, 83, 5015 (1999)

    Article  ADS  Google Scholar 

  43. M. Borghesi et al., Phys. Rev. Lett, 83, 4309 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Batani, D., Freeman, R., Baton, S. (2008). The Transport of Relativistic, Laser-Produced Electrons in Matter – Part 1. In: Progress in Ultrafast Intense Laser Science III. Springer Series in Chemical Physics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73794-0_13

Download citation

Publish with us

Policies and ethics