Skip to main content

Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit

  • Conference paper
Principal Manifolds for Data Visualization and Dimension Reduction

Part of the book series: Lecture Notes in Computational Science and Enginee ((LNCSE,volume 58))

Auto-associative models have been introduced as a new tool for building nonlinear Principal component analysis (PCA) methods. Such models rely on successive approximations of a dataset by manifolds of increasing dimensions. In this chapter, we propose a precise theoretical comparison between PCA and autoassociative models. We also highlight the links between auto-associative models, projection pursuit algorithms, and some neural network approaches. Numerical results are presented on simulated and real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.: Dynamic programming. Princeton university press, (1957)

    Google Scholar 

  2. Bosq, D. and Lecoutre, J. P.: Théorie de l’estimation fonctionnelle. Economie et Statistiques avancées. Economica, Paris (1987)

    Google Scholar 

  3. Carroll, J. D. and Arabie P.: Multidimensionnal scaling. Annual Rev. of Psy-chology, 31, 607-649 (1980)

    Article  Google Scholar 

  4. Caussinus, H. and Ruiz-Gazen, A.: Metrics for finding typical structures by means of principal component analysis. In: Data science and its Applications, pages 177-192. Harcourt Brace, Japan (1995)

    Google Scholar 

  5. Chalmond, B.: Modeling and inverse problems in image analysis. In: Applied Mathematics Science series, volume 155. Springer, New-York (2002)

    Google Scholar 

  6. Chalmond, B. and Girard, S.: Nonlinear modeling of scattered multivariate data and its application to shape change. IEEE Pattern Analysis and Machine Intelligence, 21 (5), 422-432 (1999)

    Article  Google Scholar 

  7. Cheng, B. and Titterington, D. M.: Neural networks: A review from a statistical perspective. Statistical Science, 9 (1), 2-54 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Delicado, P.: Another look at principal curves and surfaces. Journal of Multivariate Analysis, 77, 84-116 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Demartines, P. and Hérault, J.: Curvilinear component analysis: A selforganizing neural network for nonlinear mapping of data sets. IEEE Trans. on Neural Networks, 8 (1), 148-154 (1997)

    Article  Google Scholar 

  10. Diamantaras, K. L. and Kung, S. Y.: Principal component neural networks. Wiley, New-York (1996)

    MATH  Google Scholar 

  11. Eubank, R. L.: Spline smoothing and non-parametric regression. Decker (1990)

    Google Scholar 

  12. Ferraty, F. and Vieu, P.: Nonparametric modelling for functional data. Springer (2005)

    Google Scholar 

  13. Friedman, J. H.: Exploratory projection pursuit. Journal of the American Statistical Association, 82(397), 249-266 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedman, J. H. and Stuetzle, W.: Projection pursuit regression. Journal of the American Statistical Association, 76 (376), 817-823 (1981)

    Article  MathSciNet  Google Scholar 

  15. Friedman, J. H. and Tukey, J. W.: A projection pursuit algorithm for exploratory data analysis. IEEE Trans. on Computers, C23 (9), 881-890 (1974)

    Article  Google Scholar 

  16. Girard, S.: A nonlinear PCA based on manifold approximation. Computational Statistics, 15 (2), 145-167 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Girard, S., Chalmond, B., and Dinten, J. -M.: Position of principal compo-nent analysis among auto-associative composite models. Comptes-Rendus de l’Académie des Sciences, Série I, 326, 763-768 (1998)

    Article  MathSciNet  Google Scholar 

  18. Girard, S. and Iovleff, S.: Auto-associative models and generalized principal component analysis. Journal of Multivariate Analysis, 93 (1), 21-39 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gorban, A. and Zinovyev, A.: Elastic principal graphs and manifolds and their practical applications. Computing, 75 (4), 359-379 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Green, P. J. and Silverman, B. W.: Non-parametric regression and generalized linear models. Chapman and Hall, London (1994)

    Google Scholar 

  21. Hall, P.: On polynomial-based projection indices for exploratory projection pursuit. The Annals of Statistics, 17 (2), 589-605 (1990)

    Article  Google Scholar 

  22. Härdle, W.: Applied nonparametric regression. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Hartigan, J. A.: Clustering algorithms. Wiley, New-York (1995)

    Google Scholar 

  24. Hastie, T. and Stuetzle, W.: Principal curves. Journal of the American Statistical Association, 84 (406), 502-516 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hastie, T., Tibshirani, R., and Friedman, J.: The elements of statistical learning. In: Springer Series in Statistics. Springer (2001)

    Google Scholar 

  26. Huber, P. J.: Projection pursuit. The Annals of Statistics, 13 (2), 435-475 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jolliffe, I.: Principal Component Analysis. Springer-Verlag, New York (1986)

    Google Scholar 

  28. Jones, M. C. and Sibson R.: What is projection pursuit? Journal of the Royal Statistical Society A, 150, 1-36 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  29. Karhunen, J. and Joutsensalo, J.: Generalizations of principal component analy-sis, optimization problems and neural networks. Neural Networks, 8, 549-562 (1995)

    Article  Google Scholar 

  30. Kégl, B.:“Principal curves: learning, design, and applications”. PhD thesis, Concordia University, Canada (1999)

    Google Scholar 

  31. Kégl, B., Krzyzak, A., Linder, T., and Zeger, K.: A polygonal line algorithm for constructing principal curves. In: Proceedings of 12h NIPS, pages 501-507, Denver, Colorado (1998)

    Google Scholar 

  32. Klinke, S. and Grassmann, J. Projection pursuit regression. In: Wiley Series in Probability and Statistics, pages 471-496. Wiley (2000)

    Google Scholar 

  33. Kohonen, T.: Self-organization of topologically correct feature maps. Biological cybernetics, 43, 135-140 (1982)

    Article  MathSciNet  Google Scholar 

  34. Kohonen, T.: Self-organization and associative memory, 3rd edition. Springer Verlag, Berlin (1989)

    Google Scholar 

  35. Kruskal, J. B. and Wish, M.: Multidimensional scaling. Sage, Beverly Hills (1978)

    Google Scholar 

  36. Lebart L.: Contiguity analysis and classification. In: Opitz O. Gaul W. and Schader M. (eds. ) Data Analysis, pages 233-244. Springer, Berlin (2000)

    Google Scholar 

  37. LeBlanc, M. and Tibshirani, R.: Adaptive principal surfaces. Journal of the American Statistical Association, 89 (425), 53-64 (1994)

    Article  MATH  Google Scholar 

  38. Lee, J. A., Lendasse, A., and Verleysen, M.: Curvilinear distance analysis versus isomap. In: European Symposium on Artifical Neural Networks, pages 185-192. Bruges, Belgium (2002)

    Google Scholar 

  39. Milnor, J.: Topology from the differentiable point of view. University press of Virginia, Charlottesville (1965)

    Google Scholar 

  40. Pan, J-X., Fung, W-K., and Fang, K-T.: Multiple outlier detection in multivari-ate data using projection pursuit techniques. Journal of Statistical Planning and Inference, 83 (1), 153-167 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Parlett, B. N.: The symmetric eigenvalue problem. In: Classics in Applied Mathematics, vol. 20. SIAM, Philadelphia (1997)

    Google Scholar 

  42. Roweis, S. T. and Saul, L. K.: Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326 (2000)

    Article  Google Scholar 

  43. Sammson, J. W.: A nonlinear mapping algorithm for data structure analysis. IEEE Transactions on Computer, 18 (5), 401-409 (1969)

    Article  Google Scholar 

  44. Shepard, R. N. and Carroll, J. D.: Parametric representation of nonlinear data structures. In: Krishnaiah, P. R. (ed. ) Int. Symp. on Multivariate Analysis, pages 561-592. Academic-Press (1965)

    Google Scholar 

  45. Tarpey, T. and Flury, B.: Self-consistency: A fundamental concept in statistics. Statistical Science, 11 (3), 229-243 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  46. Tenenbaum, J. B., de Silva, V., and Langford, J. C.: A global geometric frame-work for nonlinear dimensionality reduction. Science, 290, 2319-2323 (2000)

    Article  Google Scholar 

  47. Tibshirani, R.: Principal surfaces revisited. Statistics and Computing, 2, 183-190(1992)

    Article  Google Scholar 

  48. Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., and Koudas, N.: Non-linear dimensionality reduction techniques for classification and visualization. In: Proceedings of 8th SIGKDD, pages 23-26. Edmonton, Canada (2002)

    Google Scholar 

  49. Wang, Y., Klijn, J. G., Zhang, Y., Sieuwerts, et al.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671-679 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Girard, S., Iovleff, S. (2008). Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit. In: Gorban, A.N., Kégl, B., Wunsch, D.C., Zinovyev, A.Y. (eds) Principal Manifolds for Data Visualization and Dimension Reduction. Lecture Notes in Computational Science and Enginee, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73750-6_8

Download citation

Publish with us

Policies and ethics