Skip to main content

Noise and Vibrations

  • Chapter
Book cover Centrifugal Pumps
  • 4706 Accesses

Abstract

As explained in Chap. 5, the flow at the impeller outlet is non-uniform. The diffuser vanes or volute cutwaters are thus approached by an unsteady flow. The flow at the stator vanes acts back on the velocity field in the impeller. The related phenomena are called “rotor/stator interaction” (RSI). As a consequence of the RSI, hydraulic excitation forces are generated. These give rise to pressure pulsations, mechanical vibrations and alternating stresses in various pump components. The vibrations transmitted to the foundations spread as solid-borne noise throughout the building. The pressure pulsations excite the pump casing to vibrations. They also travel as fluid-borne noise through the piping system, where they generate vibrations of the pipe walls. The vibrating walls and structures radiate air-borne noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature to chapter 10

  1. Gülich JF, Bolleter U: Pressure pulsations in centrifugal pumps. ASME J Vibr Acoustics 114 (1992) 272–279

    Article  Google Scholar 

  2. Bolleter U: On blade passage tones of centrifugal pumps. Vibrations 4 (1988) 3, 8–13

    Google Scholar 

  3. Lucas MJ et al.: Handbook of the Acoustic Characteristics of Turbomachinery Cavities. ASME Press, New York, 1997

    Google Scholar 

  4. Krieger P: Wechselwirkungen von Laufrad und Gehäuse einer Einschaufelpumpe am Modell der instationären Strömung. Forsch Ing Wes 54 (1988) 6, 169–180

    Article  Google Scholar 

  5. Yedidiah S: Oscillations at low NPSH caused by flow conditions in the suction pipe. ASME Cavitation and Multiphase Flow Forum, 1974

    Google Scholar 

  6. Heckl M, Müller HA: Taschenbuch der Technischen Akustik. Springer, Berlin, 1975

    Google Scholar 

  7. Hartlen RT et al.: Dynamic interaction between pump and piping system. AECL Seminar on Acoustic Pulsations in Rotating Machinery. Toronto, 1993

    Google Scholar 

  8. Bolleter U: Generation and propagation of pressure pulsations in centrifugal pump systems. AECL Seminar on Acoustic Pulsations in Rotating Machinery. Toronto, 1993

    Google Scholar 

  9. Bolleter U et al.: Hydraulic and mechanical interactions of feedpump systems. EPRI Report TR-100990, Sept. 1992

    Google Scholar 

  10. Offenhäuser H: Druckschwankungsmesssungen an Kreiselpumpen mit Leitrad. VDI Ber 193 (1973) 211–218

    Google Scholar 

  11. Ubaldi M et al.: An experimental investigation of stator induced unsteadiness on centrifugal impeller outflow. ASME J Turbomach 118 (1996) 41–51

    Google Scholar 

  12. Deeprose WM et al.: Current industrial pump and fan fluid-borne noise level prediction. IMechE Paper C251/77, 1977, 43–50

    Google Scholar 

  13. Ross D: Mechanics of Underwater Noise. Pergamon Press, 1976

    Google Scholar 

  14. Blevins RD: Flow-Induced Vibrations. Van Nostrand Reinhold, New York, 1977

    Google Scholar 

  15. Schwartz R, Nelson R: Acoustic resonance phenomena in high energy variable speed centrifugal pumps. 1st Intl Pump Symposium, Houston, 1984, 23–28

    Google Scholar 

  16. Blevins R.D: Formulas for natural frequency and mode shape. Reissue, Krieger, Malabar, 1995

    Google Scholar 

  17. Försching HW: Grundlagen der Aeroelastik. Springer, Berlin, 1974

    MATH  Google Scholar 

  18. Chen, YN, Beurer P: Strömungserregte Schwingungen an Platten infolge Karman’scher Wirbelstraßen. Pumpentagung Karlsruhe, 1973, K6

    Google Scholar 

  19. Europump Leitfaden: Geräuschemission bei Kreiselpumpen, 2002

    Google Scholar 

  20. Kurtze G: Physik und Technik der Lärmbekämpfung. Braun, Karlsruhe, 1964

    Google Scholar 

  21. Luce TW et al.: A numerical and LDV investigation of unsteady pressure fields in the vaneless space downstream of a centrifugal impeller. ASME FEDSM97-3327, 1997

    Google Scholar 

  22. Bolleter U et al.: Rotordynamic modeling and testing of boiler feedpumps. EPRI Report TR-100980, Sept. 1992

    Google Scholar 

  23. Childs D: Turbomachinery Rotordynamics. Wiley, New York, 1993

    Google Scholar 

  24. Nordmann R. at al.: Rotordynamic coefficients and leakage flow for smooth and grooved seals in turbopumps, Proceedings IFToMM Meeting Tokyo, Sept. 1986

    Google Scholar 

  25. Florjancic S: Annular seals of high energy centrifugal pumps: A new theory and full scale measurement of rotordynamic coefficients and hydraulic friction factors. Diss. ETH Zürich, 1990

    Google Scholar 

  26. Childs DW et al.: Annular honeycomb seal test results for leakage and rotordynamic coefficients. ASME Paper 88-Trib-35

    Google Scholar 

  27. Gaffal K: Innovatives, umweltfreundliches und wirtschaftliches Speisepumpenkonzept erprobt. VGB Kraftwerkstechnik 73 (1993) 223–230

    Google Scholar 

  28. Ehrich FF: Handbook of Rotordynamics. McGraw Hill, New York, 1992

    Google Scholar 

  29. Gülich JF: European Patent EP 0224764 B1, 1989

    Google Scholar 

  30. Tsujimoto Y et al.: Observation of oscillating cavitation in an inducer. ASME J Fluids Engng, 119 (1997) 775–781

    Google Scholar 

  31. Guinzburg A: Rotordynamic forces generated by discharge to suction leakage flows in centrifugal pumps. California Institute of Technology, Report E249.14, 1992

    Google Scholar 

  32. Kwong AHM, Dowling, AP: Unsteady flow in diffusers. ASME J Fluids Engng. 116 (1994) 843–847

    Article  Google Scholar 

  33. Brennen CE: Hydrodynamics of pumps. Concepts ETI, Norwich, 1994

    Google Scholar 

  34. Alford JS: Protecting turbomachinery from self-excited rotor whirl. ASME J Engng for Power 87 (1965) 333–344

    Google Scholar 

  35. Marscher WD: Subsynchronous vibration in boiler feedpumps due to stable response to hydraulic forces at part-load. Proc IMechE 202 (1988) 167–175

    Google Scholar 

  36. Ehrich FF, Childs D: Self-excited vibration in high-performance turbomachinery. Mech Engng, 106 (1984) May, 66–79

    Google Scholar 

  37. Freese, HD: Querkräfte in axial durchströmten Drosselspalten. Pumpentagung Karlsruhe, 1978, K6

    Google Scholar 

  38. Verhoeven J: Unsteady hydraulic forces in centrifugal pumps. IMechE Paper C348/88, 1988

    Google Scholar 

  39. Kanki H et al.: Experimental research on the hydraulic excitation force on the pump shaft. ASME Paper 81-DET-71

    Google Scholar 

  40. Naudascher E, Rockwell D: Flow-induced vibrations. An Engineering Guide. Balkema, Rotterdam, 1994

    Google Scholar 

  41. Chen YN: Wasserdruckschwingungen in Spiralgehäusen von Speicherpumpen. Techn Rundschau Sulzer (1961) Forschungsheft, 21–34

    Google Scholar 

  42. Domm U, Dernedde R: Über eine Auswahlregel für die Lauf-und Leitschaufelzahl von Kreiselpumpen. KSB Techn Ber 9 (1964)

    Google Scholar 

  43. Dubas M: Über die Erregung infolge der Periodizität von Turbomaschinen. Ing Archiv 54 (1984) 413–426

    Article  Google Scholar 

  44. Kollmann FG: Maschinenakustik. Grundlagen, Meßtechnik, Beeinflussung. 2. Aufl. Springer, Berlin, 2000

    Google Scholar 

  45. Cremer R, Heckl M: Körperschall. 2. Aufl. Springer, Berlin, 1995

    Google Scholar 

  46. Warth H: Experimentelle Untersuchungen axial durchströmter Ringspalte von Hybridentlastungseinrichtungen. Diss TU Kaiserslautern, 2000. SAM Forschungsbericht Bd 2

    Google Scholar 

  47. .Weaver DS: Interaction of fluid flow and acoustic fields. AECL Seminar on Acoustic Pulsations in Rotating Machinery. Toronto, 1993

    Google Scholar 

  48. Ziada S: Flow-excited resonances of piping systems containing side-branches: excitation mechanism, counter-measures and design guidelines. AECL Seminar on Acoustic Pulsations in Rotating Machinery. Toronto, 1993

    Google Scholar 

  49. Tanaka H: Vibration behavior and dynamic stress of runners of very high head reversible pump-turbines. IAHR Symp Belgrade, 1990, Beitrag U2

    Google Scholar 

  50. Strub RA: Pressure fluctuations and fatigue stresses in storage pumps and pump turbines. ASME paper No 63-AHGT-11, 1963

    Google Scholar 

  51. Chen YN et al: Reduction of vibrations in a centrifugal pump hydraulic system. IAHR Karlsruhe, 1979, 78–84

    Google Scholar 

  52. Rütten F: Large eddy simulation in 90°-pipe bend flows. J of Turbulence 2 (2001) 003

    Article  Google Scholar 

  53. Chen YN, Florjancic D: Vortex-induced resonance in a pipe system due to branching. IMech C109/75, 1975

    Google Scholar 

  54. Storace AF et al: Unsteady flow and whirl-inducing forces in axial-flow compressors. ASME J Turbo machinery 123 (2001) July, 433–445

    Google Scholar 

  55. Schneider K: Das Verhalten von Kreiselpumpen beim Auftreten von Druckwellen. Diss. TU Stuttgart, 1986

    Google Scholar 

  56. Weber M: Geräusch-und pulsationsarme Verbrennungsluftgebläse und deren Einfluß auf selbsterregte Brennkammerschwingungen. Diss. TU Kaiserslautern, 2002. SAM Forschungsbericht Bd 7

    Google Scholar 

  57. Graf K: Spaltströmungsbedingte Kräfte an berührungslosen Dichtungen von hydraulischen und thermischen Turbomaschinen. Diss. ETH Nr. 9319, 1991

    Google Scholar 

  58. Kündig P: Gestufte Labyrinthdichtungen hydraulischer Maschinen. Experimentelle Untersuchung der Leckage, der Reibung und der stationären Kräfte. Diss. ETH Nr. 10366, 1993

    Google Scholar 

  59. Amoser M: Strömungsfelder und Radialkräfte an Labyrinthdichtungen hydraulischer Strömungsmaschinen. Diss. ETH Nr. 11150, 1995

    Google Scholar 

  60. Spirig M: Einfluß der Kammerströmung auf die strömungsbedingten Kräfte im endlich langen Spalt einer hydraulischen Labyrinthdichtung. Diss. ETH Nr. 13288, 1999

    Google Scholar 

  61. Storteig E: Dynamic characteristics and leakage performance of liquid annular seals in centrifugal pumps. Diss MTA-00-137 TU Trondheim, 2000

    Google Scholar 

  62. Au-Yang MK: Flow-induced vibrations of power and process plant components. Professional Engineering Publishing Ltd, 2001

    Google Scholar 

  63. Adams ML: Rotating machinery vibration. Marcel Dekker Inc, 2001

    Google Scholar 

  64. Robinet F, Gülich JF, Kaiser T. Vane pass vibrations — source, assessment and correction — a practical guide for centrifugal pumps. 16th Intl Pump Users Symp, Houston, 1999, p 121–137

    Google Scholar 

  65. Guo S, Maruta Y: Experimental investigation on pressure fluctuations and vibration of the impeller in a centrifugal pump with vaned diffusers. JSME international Journal, 48 (2005) 1, 136–143

    Article  Google Scholar 

  66. Makay E, Barret JA: Changes in hydraulic component geometries greatly increased power plant availability and reduced maintenance cost: Case histories. 1st Intl Pump Symp, Houston, 1984

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Noise and Vibrations. In: Centrifugal Pumps. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73695-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73695-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73694-3

  • Online ISBN: 978-3-540-73695-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics