Skip to main content

Biform Theories in Chiron

  • Conference paper
Towards Mechanized Mathematical Assistants (MKM 2007, Calculemus 2007)

Abstract

An axiomatic theory represents mathematical knowledge declaratively as a set of axioms. An algorithmic theory represents mathematical knowledge procedurally as a set of algorithms. A biform theory is simultaneously an axiomatic theory and an algorithmic theory. It represents mathematical knowledge both declaratively and procedurally. Since the algorithms of algorithmic theories manipulate the syntax of expressions, biform theories—as well as algorithmic theories—are difficult to formalize in a traditional logic without the means to reason about syntax. Chiron is a derivative of von-Neumann-Bernays-Gödel (nbg) set theory that is intended to be a practical, general-purpose logic for mechanizing mathematics. It includes elements of type theory, a scheme for handling undefinedness, and a facility for reasoning about the syntax of expressions. It is an exceptionally well-suited logic for formalizing biform theories. This paper defines the notion of a biform theory, gives an overview of Chiron, and illustrates how biform theories can be formalized in Chiron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barendregt, H., Wiedijk, F.: The challenge of computer mathematics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, 2351–2375 (2005)

    Article  MathSciNet  Google Scholar 

  2. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic 4, 470–504 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Calculemus Project: Systems for Integrated Computation and Deduction. Web site at http://www.calculemus.net/

  4. Carette, J.: Understanding expression simplification. In: Gutierrez, J. (ed.) ISSAC 2004. Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, pp. 72–79. ACM Press, New York (2004)

    Chapter  Google Scholar 

  5. Carette, J., Farmer, W.M., Sorge, V.: A rational reconstruction of a system for experimental mathematics. In: Kauers, M., Windsteiger, W. (eds.) Towards Mechanized Mathematical Assistants. LNCS (LNAI), vol. 4573, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Carette, J., Farmer, W.M., Wajs, J.: Trustable communication between mathematics systems. In: Hardin, T., Rioboo, R. (eds.) Calculemus 2003, pp. 58–68, Rome, Italy, Aracne (2003)

    Google Scholar 

  7. Farmer, W.M.: Chiron: A multi-paradigm logic. Studies in Logic, Grammar and Rhetoric. Special issue: Matuszewski, R., Rudnicki, P., Zalewska, A. (eds.) From Insight to Proof, forthcoming

    Google Scholar 

  8. Farmer, W.M.: The seven virtues of simple type theory. SQRL Report No. 18, McMaster University, 2003. Revised (2006)

    Google Scholar 

  9. Farmer, W.M.: Chiron: A set theory with types, undefinedness, quotation, and evaluation. SQRL Report No. 38, McMaster University (2007)

    Google Scholar 

  10. Farmer, W.M., von Mohrenschildt, M.: Transformers for symbolic computation and formal deduction. In: Colton, S., Martin, U., Sorge, V. (eds.) Automated Deduction - CADE-17. LNCS, vol. 1831, pp. 36–45. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Farmer, W.M., von Mohrenschildt, M.: An overview of a formal framework for managing mathematics. Annals of Mathematics and Artificial Intelligence 38, 165–191 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mthematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

    Article  Google Scholar 

  13. Gödel, K.: The Consistency of the Axiom of Choice and the Generalized Continuum Hypothesis with the Axioms of Set Theory. In: Annals of Mathematical Studies, vol. 3, Princeton University Press, Princeton (1940)

    Google Scholar 

  14. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995), available at http://www.cl.cam.ac.uk/jrh13/papers/reflect.ps.gz

  15. MathScheme: An Integrated Framework for Computer Algebra and Computer Theorem Proving, Web site at http://www.imps.mcmaster.ca/mathscheme/

  16. Mendelson, E.: Introduction to Mathematical Logic, vol. 4. Chapman & Hall/CRC, Sydney (1997)

    MATH  Google Scholar 

  17. Nogin, A., Kopylov, A., Yu, X., Hickey, J.: A computational approach to reflective meta-reasoning about languages with bindings. In: Momigliano, A., Pollack, R. (eds.) MERLIN 2005. Proceedings of the Third ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Variable Binding. An extended version is available as a California Institute of Technology technical report, CaltechCSTR:2005.003, pp. 2–12. ACM Press, New York (2005)

    Chapter  Google Scholar 

  18. RISC Research Institute for Symbolic Computation, Web site at http://www.risc.uni-linz.ac.at//

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Kauers Manfred Kerber Robert Miner Wolfgang Windsteiger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farmer, W.M. (2007). Biform Theories in Chiron. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds) Towards Mechanized Mathematical Assistants. MKM Calculemus 2007 2007. Lecture Notes in Computer Science(), vol 4573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73086-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73086-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73083-5

  • Online ISBN: 978-3-540-73086-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics