Skip to main content

Electrochemistry of Carbon Nanotubes

  • Chapter
Book cover Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

The electrochemistry of carbon nanotubes is reviewed with the aim ofsummarizing what we can learn using these techniques, and what are the potentialapplications of nanotubes as electrode materials. Electrochemical chargingchanges the electronic structure. Consequently, electrochemistry and in-situspectroelectrochemistry provide versatile tools for the investigation of fundamentaleffects related to the electronic structure of carbon nanotubes. This approach iscompatible with chemical doping, but the electrochemical charging of nanotubesallows for precise control of the doping conditions. Salient (spectro)electrochemicaldata accumulated during the last ten years on SWNTs, DWNTs and fullerenepeapods are here reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. J. Bard, L. R. Faulkner: Electrochemical Methods Fundamentals and Applications, 2 ed. (Wiley, New York 2001)

    Google Scholar 

  • L. Dunsch: Vom Ion zur Elektrode, 2 ed. (DVG, Leipzig 1988)

    Google Scholar 

  • I. Heller, J. Kong, K. A. Williams, C. Dekker, S. G. Lemay: Electrochemistry at single walled carbon nanotubes, J. Am. Chem. Soc. 128, 7353–7359 (2006)

    Google Scholar 

  • L. Kavan, P. Rapta, L. Dunsch: In situ {R}aman and {Vis NIR} spectroelectrochemistry at single-walled carbon nanotubes, Chem. Phys. Lett. 328, 363–368 (2000)

    Google Scholar 

  • L. Kavan, M. Kalbac, M. Zukalova, L. Dunsch: Electrochemical doping of chirality-resolved carbon nanotubes, J. Phys. Chem. B 109, 19613–19619 (2005)

    Google Scholar 

  • L. Kavan, L. Dunsch: Diameter selective electrochemical doping of {HiPCO} single wall carbon nanotubes, Nano Lett. 3, 969–972 (2003)

    Google Scholar 

  • L. Kavan, P. Rapta, L. Dunsch, M. J. Bronikowski, P. Willis, R. E. Smalley: Electrochemical tuning of electronic properties of single walled carbon nanotubes: {I}n-situ {R}aman and {Vis-NIR} study, J. Phys. Chem. B 105, 10764–10771 (2001)

    Google Scholar 

  • P. Corio, A. Jorio, N. Demir, M. S. Dresselhaus: Spectroelectrochemical studies of single wall carbon nanotubes films, Chem. Phys. Lett. 392, 396–402 (2004)

    Google Scholar 

  • P. Corio, P. S. Santos, V. W. Brar, G. G. Samsonidze, S. G. Chou, M. S. Dresselhaus: Potential dependent surface {R}aman spectroscopy of carbon nanotubes, Chem. Phys. Lett. 370, 675–682 (2003)

    Google Scholar 

  • L. Kavan, L. Dunsch: Ionic liquids for in-situ {Vis-NIR} and {R}aman spectroelectrochemistry: {D}oping of carbon nanostructures, Chem. Phys. Chem. 4, 944–950 (2003)

    Google Scholar 

  • P. M. Rafailov, J. Maultzsch, C. Thomsen, H. Kataura: Electrochemical switching of the {P}eierls-like transition in metallic single-walled carbon nanotubes, Phys. Rev. B 72, 045411 (2005)

    Google Scholar 

  • P. M. Rafailov, C. Thomsen: Raman spectroscopy of electrochemically doped carbon nanotubes, J. Optoelect. Adv. Mater. 7, 461–464 (2005)

    Google Scholar 

  • M. Stoll, P. M. Rafailov, W. Frenzel, C. Thomsen: Electrochemical and {R}aman measurements on single walled carbon nanotubes, Chem. Phys. Lett. 375, 625–631 (2003)

    Google Scholar 

  • C. P. An, Z. V. Vardeny, Z. Iqbal, G. Spinks, R. H. Baughman, A. A. Zakhidov: Raman scattering study of electrochemically doped single-wall carbon nanotubes, Synth. Met. 116, 411–414 (2001)

    Google Scholar 

  • A. Claye, S. Rahman, J. E. Fischer, A. Sirenko, G. U. Sumanasekera, P. C. Eklund: In-situ {R}aman scattering in alkali-doped single-wall carbon nanotubes, Chem. Phys. Lett. 333, 16–22 (2001)

    Google Scholar 

  • S. Gupta, J. Robertson: Ion transport and electrochemical tuning of {F}ermi level in single-wall carbon nanotubes, J. Appl. Phys. 100, 083711–0837119 (2006)

    Google Scholar 

  • Q. Xie, E. Perez-Codero, L. Echegoyen: Electrochemical detection of {C60 6-} and {C70 6-}, J. Am. Chem. Soc. 114, 3978–3980 (1992)

    Google Scholar 

  • C. A. Reed, R. D. Bolskar: Discrete fulleride anions and fullerenium cations, Chem. Rev. 100, 1075–1120 (2000)

    Google Scholar 

  • I. Heller, J. Kong, H. A. Heering, K. A. Williams, S. G. Lemay, C. Dekker: Individual single-wall carbon nanotubes as nanoelectrodes for electrochemistry, Nano Lett. 5, 137–142 (2005)

    Google Scholar 

  • S. Roth: One-Dimensional Metals (Wiley-VCH, Weinheim 1995)

    Google Scholar 

  • L. Duclaux: Review on doping of nanotubes, Carbon 40, 1751–1764 (2002)

    Google Scholar 

  • M. Burghard: Electronic and vibrational properties of carbon nanotubes, Surf. Sci. Rep. 58, 1–109 (2005)

    Google Scholar 

  • A. Claye, J. E. Fischer, A. Metrot: Kinetics of alkali insertion into single-wall carbon nanotubes, Chem. Phys. Lett. 330, 61–67 (2000)

    Google Scholar 

  • A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, R. E. Smalley: Li insertion electrochemistry at single wall carbon nanotubes, J. Electrochem. Soc. 147, 2845–2852 (2000)

    Google Scholar 

  • Y. A. Kim, M. Kojima, H. Muramatsu, S. Umemoto, T. Watanabe, K. Yoshida, K. Sato, T. Ikeda, T. Hayashi, M. Endo, M. Terrones, M. S. Dresselhaus: In situ {R}aman study of single- and double-walled carbon nanotubes, Small 2, 667–676 (2006)

    Google Scholar 

  • T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, Y. Iwasa: Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes, Nature Mater. 2, 683–688 (2003)

    Google Scholar 

  • L. Duclaux, J. P. Salvetat, P. Lauginie, T. Cacciaguera, A. M. Faugere, C. Goze-Bac, P. Bernier: Synthesis and characterization of {SWCNT}-heavy alkali metal intercalation compounds, effect of host {SWCNTs} materials, J. Phys. Chem. Solids 64, 571–581 (2003)

    Google Scholar 

  • M. Zheng, M. Yudasaka, S. Iijima: Dissociation of electrolytes in nano-aqueous system within single-wall carbon nanotubes, J. Phys. Chem. B 109, 6037–6039 (2005)

    Google Scholar 

  • S. B. Cronin, R. Barnett, M. Tinkham, S. G. Chou, O. Rabin, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg: Electrochemical gating of individual single wall carbon nanotubes, Appl. Phys. Lett. 84, 2052–5054 (2004)

    Google Scholar 

  • J. Sandler, M. S. P. Shaffer, A. H. Windle, M. P. Halsall: Variations in the {R}aman peak shift as a function of hydrostatic pressure, Phys. Rev. B 67, 035417 (2003)

    Google Scholar 

  • C. T. Chan, W. A. Kamitakahara, K. M. Ho, P. C. Eklund: Charge transfer effects in graphite intercalates, Phys. Rev. Lett. 58, 1528–1531 (1987)

    Google Scholar 

  • L. Pietronero, S. Strassler: Bond-length change as a tool to determine charge transfer, Phys. Rev. Lett. 47, 593–596 (1981)

    Google Scholar 

  • Y. N. Garstein, A. A. Zakhidov, R. H. Baughman: Charge induced anisotropic distortion of carbon nanotubes, Phys. Rev. Lett. 89, 045503 (2002)

    Google Scholar 

  • S. Gupta, M. Hughes, A. H. Windle, J. Robertson: Charge transfer in carbon nanotube actuators, J. Appl. Phys. 95, 2038–2048 (2004)

    Google Scholar 

  • S. Gupta: Electrochemical tuning and investigation on actuator mechanism of nanotubes, Diam. Rel. Mater. 15, 378–384 (2006)

    Google Scholar 

  • P. Puech, E. Flahaut, A. Sapelkin, H. Hubel, D. J. Dunstan, G. Landa, W. S. Bacsa: Nanoscale pressure effects in double walled carbon nanotubes, Phys. Rev. B 73, 233408 (2006)

    Google Scholar 

  • R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz: Carbon nanotube actuators, Science 284, 1340–1344 (1999)

    Google Scholar 

  • K. Balasubramanian, M. Burghard: Biosensors based on carbon nanotubes, Anal. Bioanal. Chem. 385, 452–468 (2006)

    Google Scholar 

  • K. Murakoshi, K. Okazaki: Electrochemical potential control of isolated carbon nanotubes, Electrochim. Acta 50, 3069–3075 (2005)

    Google Scholar 

  • K. Okazaki, Y. Nakato, K. Murakoshi: Absolute potential of the {F}ermi level of isolated {SWCNT}, Phys. Rev. B 68, 035434 (2003)

    Google Scholar 

  • K. Okazaki, Y. Nakato, K. Murakoshi: Characteristics of {R}aman features of isolated single wall carbon nanotubes under electrochemical control, Surf. Sci. 566-568, 436–442 (2004)

    Google Scholar 

  • S. Kazaoui, N. Minami, H. Kataura, Y. Achiba: Absorption spectroscopy of single-wall carbon nanotubes, Synth. Met. 121, 1201–1202 (2001)

    Google Scholar 

  • S. Kazaoui, N. Minami, N. Matsuda, H. Kataura, Y. Achiba: Electrochemical tuning of electronic properties in single-wall carbon nanotubes, Appl. Phys. Lett. 78, 3433–3435 (2001)

    Google Scholar 

  • M. C. Buzzeo, R. G. Evans, R. G. Compton: Non-haloaluminate room-temperature ionic liquids in electrochemistry – a review, Chem. Phys. Chem. 5, 1106–1120 (2004)

    Google Scholar 

  • L. Kavan, M. Kalbac, M. Zukalova, L. Dunsch: Comment on determination of the exciton binding energy in single-walled carbon nanotubes, Phys. Rev. Lett. 98, 019701 (2007)

    Google Scholar 

  • E. R. Brown, J. R. Sandifer: Electrochemical methods, in Physical Methods of Chemistry, vol. II, 2 ed. (Wiley, New York 1986) Chap. 2

    Google Scholar 

  • P. T. Kissinger, W. R. Heineman: Laboratory Techniques in Electroanalytical Chemistry, 2 ed. (M. Dekker, New York 1996)

    Google Scholar 

  • A. Claye, N. M. Nemes, A. Janossy, J. E. Fischer: Structure and electronic properties of {K} doped single-wall carbon nanotubes, Phys. Rev. B 62, R4845–R4848 (2000)

    Google Scholar 

  • J. Tarabek, L. Kavan, M. Kalbac, P. Rapta, M. Zukalova, L. Dunsch: In situ {EPR} spectroelectrochemistry of single-walled carbon nanotubes and {C60} fullerene peapods, Carbon 44, 2147–2154 (2006)

    Google Scholar 

  • W. K. Hsu, J. P. Hare, M. Terrones, H. W. Kroto, D. R. M. Walton, P. J. F. Harris: Condensed-phase nanotubes, Nature 377, 687–687 (1995)

    Google Scholar 

  • W. K. Hsu, M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto, D. R. M. Walton: Electrochemical formation of carbon nanostructures, Chem. Phys. Lett. 262, 161–166 (1996)

    Google Scholar 

  • L. Kavan: Electrochemical carbon, Chem. Rev. 97, 3061–3082 (1997)

    Google Scholar 

  • L. Kavan, J. Hlavaty: Carbon nanostructures from perfluorinated hydrocarbons, Carbon 37, 1863–1865 (1999)

    Google Scholar 

  • J. K. Campbell, L. Sun, R. M. Crooks: Electrochemistry using single carbon nanotubes, J. Am. Chem. Soc. 121, 3779–3780 (1999)

    Google Scholar 

  • L. Larrimore, S. Nad, X. Zhou, H. Abruna, P. L. McEuen: Probing electrostatic potentials in solutions with carbon nanotube transistors, Nano Lett. 6, 1329–1333 (2006)

    Google Scholar 

  • C. Liu, A. J. Bard, F. Wudl, I. Weitz, J. R. Heath: Electrochemical characterization of films of single-walled carbon nanotubes and their possible use as supercapacitors, Electrochem. Solid-State Lett. 2, 577–578 (1999)

    Google Scholar 

  • E. Frackowiak, F. Béguin: Carbon materials for supercapacitors, Carbon 39, 937–950 (2001)

    Google Scholar 

  • E. Frackowiak, F. Béguin: Electrochemical storage of energy in carbon nanotubes, Carbon 40, 1775–1787 (2002)

    Google Scholar 

  • B. R. Goldsmith, J. G. Coroneus, V. R. Khalap, A. A. Kane, G. A. Weiss, P. G. Collins: Conductance-controlled point functionalization of single-walled carbon nanotubes, Science 315, 77–81 (2007)

    Google Scholar 

  • L. Dunsch, P. Janda, K. Mukhopadhyay, H. Shinohara: Electrochemical metal deposition on carbon nanotubes, New Diam. Front. Carb. Technol. 11, 427–435 (2001)

    Google Scholar 

  • G. G. Wildgoose, C. E. Banks, R. G. Compton: Metal nanoparticles and related materials supported on carbon nanotubes: {M}ethods and applications, Small 2, 182–193 (2006)

    Google Scholar 

  • G. G. Wildgoose, C. E. Banks, H. C. Leventis, R. G. Compton: Chemically modified carbon nanotubes for electroanalysis, Microchim. Acta 152, 187–214 (2006)

    Google Scholar 

  • K. Gong, Y. Yan, M. Zhang, L. Su, S. Xiong, L. Mao: Electrochemistry and electroanalytical applications of carbon nanotubes: {A} review, Anal. Sci. 21, 1383–1393 (2005)

    Google Scholar 

  • J. Gooding: Nanostructuring electrodes with carbon nanotubes, Electrochim. Acta 50, 3049–3060 (2005)

    Google Scholar 

  • B. S. Sherigara, W. Kutner, F. D'Souza: Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes, Electroanalysis 15, 753–772 (2003)

    Google Scholar 

  • N. Rajalakshmi, K. S. Dhathathreyan, A. Govindaraj: Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage, Electrochim. Acta 45, 4511–4515 (2000)

    Google Scholar 

  • R. A. H. Niessen, J. de Jonge, P. H. L. Notten: The electrochemistry of carbon nanotubes {I A}queous electrolytes, J. Electrochem. Soc. 153, A1484–A1491 (2006)

    Google Scholar 

  • G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, W. Z. Li: Structure and lithium insertion properties of carbon nanotubes, J. Electrochem. Soc. 146, 1696–1701 (1999)

    Google Scholar 

  • E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Béguin: Electrochemical storage of lithium in multiwalled nanotubes, Carbon 37, 61–69 (1999)

    Google Scholar 

  • S. Roseblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P. L. McEuen: High performance electrolyte gated carbon nanotube transistor, Nano Lett. 2, 869–872 (2002)

    Google Scholar 

  • G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin: Carbon nanotube membranes for electrochemical energy storage and production, Nature 393, 346–349 (1998)

    Google Scholar 

  • B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou: Electrochemical intercalation of {SWCNT} with lithium, Chem. Phys. Lett. 307, 153–157 (1999)

    Google Scholar 

  • J. Wang, C. Y. Wang, C. O. Too, G. G. Wallace: Highly-flexible fibre battery incorporating polypyrrole cathode and carbon nanotubes anode, J. Power Sources 161, 1458–1462 (2006)

    Google Scholar 

  • M. Baibarac, M. Lira-Cantu, J. Oro-Sole, N. Casan-Pastor, P. Gomez-Romero: Electrochemically functionalized carbon nanotubes and their application to rechargeable lithium batteries, Small 2, 1075–1082 (2006)

    Google Scholar 

  • F. Wu, B. Xu: Progress on the application of carbon nanotubes in supercapacitors, New Carbon Mater. 21, 176–184 (2006)

    Google Scholar 

  • C. S. Du, N. Pan: High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition, Nanotechnology 17, 5314–5318 (2006)

    Google Scholar 

  • Q. Wang, Z. H. Wen, J. H. Li: A hybrid supercapacitor fabricated with a carbon nanotube cathode and a {TiO2-B} nanowire anode, Adv. Funct. Mater. 16, 2141–2146 (2006)

    Google Scholar 

  • Y. G. Wang, L. Yu, Y. Y. Xia: Electrochemical capacitance performance of hybrid supercapacitors based on {NiO2} carbon nanotube composites and activated carbon, J. Electrochem. Soc. 153, A743–A748 (2006)

    Google Scholar 

  • H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, D. P. Wilkinson: A review of anode catalysis in the direct methanol fuel cell, J. Power Sources 155, 95–110 (2006)

    Google Scholar 

  • Y. H. Lin, X. L. Cui, C. C. Yen, M. Wai: Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells, J. Phys. Chem. B 109, 14410–14415 (2005)

    Google Scholar 

  • A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan: Miniaturized gas ionization sensors using carbon nanotubes, Nature 424, 171–174 (2003)

    Google Scholar 

  • S. J. Tans, R. M. Verschueren, C. Dekker: Transistor based on single walled carbon nanotubes, Nature 393, 49–51 (1998)

    Google Scholar 

  • N. Sinha, J. Z. Ma, J. T. W. Yeow: Carbon nanotube-based sensors, J. Nanosci. Nanotechnol. 6, 573–590 (2006)

    Google Scholar 

  • J. S. Ye, F. S. Sheu: Functionalization of {CNT}: {N}ew routes towards electrochemical sensors, Curr. Nanosci. 2, 1–9 (2006)

    Google Scholar 

  • D. W. Kim, J. S. Lee, G. S. Lee, L. Overzet, M. Kozlov, A. E. Aliev, Y. W. Park, J. Yang: Carbon nanotubes based methanol sensor for fuel cells application, J. Nanosci. Nanotechnol. 6, 3608–3613 (2006)

    Google Scholar 

  • Y. H. Lin, W. Yantasee, J. Wang: Carbon nanotubes {(CNTs)} for the development of electrochemical biosensors, Front. Biosci. 10, 492–505 (2005)

    Google Scholar 

  • S. Roth, R. H. Baughman: Actuators of individual carbon nanotubes, Curr. Appl. Phys. 2, 311–314 (2002)

    Google Scholar 

  • J. N. Barisci, G. G. Wallace, D. R. MacFarlane, R. H. Baughman: Investigation of ionic liquids as electrolytes for carbon nanotube electrodes, Electrochem. Commun. 6, 22–27 (2004)

    Google Scholar 

  • A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, R. E. Smalley: Evidence for charge transfer in carbon nanotube bundles from {R}aman scattering, Nature 388, 257–259 (1997)

    Google Scholar 

  • G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, P. C. Eklund: Electrochemical oxidation of single-wall carbon nanotubes in sulfuric acid, J. Phys. Chem. B 103, 4292–4297 (1999)

    Google Scholar 

  • S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, Y. Achiba: Amphoteric doping of single-wall carbon nanotubes, Phys. Rev. B 60, 13339–13342 (1999)

    Google Scholar 

  • P. Petit, C. Mathis, C. Journet, P. Bernier: Tuning and monitoring of electronic structure of single-wall carbon nanotubes, Chem. Phys. Lett. 305, 370–374 (1999)

    Google Scholar 

  • R. Jacquemin, S. Kazaoui, D. Yu, A. Hassanien, N. Minami, H. Kataura, Y. Achiba: Doping mechanism of single-wall carbon nanotubes studied by optical absorption, Synth. Met. 115, 283–287 (2000)

    Google Scholar 

  • N. Bendiab, E. Anglaret, J. L. Bantignies, A. Zahab, J. L. Sauvajol, P. Petit, C. Mathis: Stoichiometry dependence of the {R}aman spectrum of alkali doped single-wall carbon nanotubes, Phys. Rev. B 64, 245424 (2001)

    Google Scholar 

  • X. Liu, T. Pichler, M. Knupfer, J. Fink, H. Kataura: Electronic properties of {K}-intercalated peapods, Phys. Rev. B 69, 0754171 (2004)

    Google Scholar 

  • Z. Wang, H. Pedrosa, T. Krauss, L. Rothberg: Determination of the exciton binding energy in single walled carbon nanotubes, Phys. Rev. Lett. 96, 047403 (2006)

    Google Scholar 

  • M. J. O'Connell, E. E. Eibergen, S. K. Doorn: Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra, Nature Mater. 4, 412–418 (2005)

    Google Scholar 

  • H. Gerischer: Density of electronic states of graphite from differential capacitance, J. Phys. Chem. 91, 1930–1935 (1987)

    Google Scholar 

  • H. Gerischer: Double layer capacity of graphite, J. Phys. Chem. 89, 4251–4256 (1985)

    Google Scholar 

  • J. P. Randin, E. Yeager: Differential capacitance study of stress annealed pyrolytic graphite electrodes, J. Electrochem. Soc. 118, 711–714 (1971)

    Google Scholar 

  • A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset: Specific surface area of carbon nanotubes, Carbon 39, 507–514 (2001)

    Google Scholar 

  • J. C. Rubim, P. Corio, M. C. C. Riberiro, M. Matz: Surface enhanced {R}aman on electrode surface, J. Phys. Chem. 99, 15765–15774 (1995)

    Google Scholar 

  • L. Kavan, L. Dunsch, H. Kataura: In situ {Vis-NIR} and {R}aman spectroelectrochemistry at fullerene peapods, Chem. Phys. Lett. 361, 79–85 (2002)

    Google Scholar 

  • L. Kavan, L. Dunsch, H. Kataura, A. Oshiyama, M. Otani, S. Okada: Electrochemical tuning of electronic structure of {C60} and {C70} fullerene peapods: {I}n-situ {Vis-NIR} and {R}aman study, J. Phys. Chem. B 107, 7666–7675 (2003)

    Google Scholar 

  • M. Kalbac, L. Kavan, M. Zukalova, L. Dunsch: In situ {Vis-NIR} and {R}aman spectroelectrochemistry of double wall carbon nanotubes, Adv. Funct. Mater. 15, 418–426 (2005)

    Google Scholar 

  • G. Chen, C. A. Furtado, S. Bandow, S. Iijima, P. C. Eklund: Anomalous contraction of the {C-C} bond length in semiconducting carbon nanotubes observed during {C}s doping, Phys. Rev. B 71, 045408 (2005)

    Google Scholar 

  • G. Chen, C. A. Furtado, U. J. Kim, P. C. Eklund: Alkali metal doping dynamics and anomalous lattice contraction of individual debundled carbon nanotubes, Phys. Rev. B 72, 155406 (2005)

    Google Scholar 

  • N. Bendiab, L. Spina, A. Zahab, P. Poncharal, C. Marliere, J. L. Bantignies, E. Anglaret, J. L. Sauvajol: Combined in-situ conductivity and {R}aman studies of {Rb} doping of single-wall carbon nanotubes, Phys. Rev. B 63, 153407 (2001)

    Google Scholar 

  • S. Gupta, M. Hughes, A. H. Windle, J. Robertson: In situ {R}aman spectroelectrochemistry of nanotubes, Diam. Rel. Mater. 13, 1314–1321 (2004)

    Google Scholar 

  • S. Ghosh, A. K. Sood, C. N. R. Rao: Electrochemical tuning of band structure of single-wall carbon nanotubes, J. Appl. Phys. 92, 1165–1167 (2002)

    Google Scholar 

  • Z. Wang, H. Pedrosa, T. Krauss, L. Rothberg: Reply to the comment on determination of the exciton binding energies, Phys. Rev. Lett. 98, 019702 (2007)

    Google Scholar 

  • M. Kalbac, L. Kavan, M. Zukalova, L. Dunsch: The identification of dispersive and non-dispersive intermediate frequency modes of {HiPCO} single walled carbon nanotubes by in situ {R}aman spectroelectrochemistry, Phys. Stat. Sol. (b) 243, 3134–3137 (2006)

    Google Scholar 

  • L. Kavan, M. Kalbac, M. Zukalova, L. Dunsch: Raman spectroelectrochemistry of index-identified metallic carbon nanotubes: {T}he resonance rule revisited, Phys. Stat. Sol. B 243, 3130–3133 (2006)

    Google Scholar 

  • A. Kukovecz, T. Pichler, R. Pfeiffer, H. Kuzmany: Diameter selective charge transfer in p- and n-doped single-wall carbon nanotubes, Chem. Commun. pp. 1730–1731 (2002)

    Google Scholar 

  • A. Kukovecz, T. Pichler, C. Kramberger, H. Kuzmany: Diameter selective doping of single-wall carbon nanotubes, Phys. Chem. Chem. Phys. 5, 582–587 (2003)

    Google Scholar 

  • W. Zhou, J. Vavro, N. M. Nemes, J. E. Fischer, F. Borondics, K. Kamaras, D. B. Tanner: Charge transfer and {F}ermi level shift in p-doped single-walled carbon nanotubes, Phys. Rev. B 71, 205423 (2005)

    Google Scholar 

  • H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen: Chirality distribution and transition energies of carbon nanotubes, Phys. Rev. Lett. 93, 177401 (2004)

    Google Scholar 

  • A. Jorio, C. Fantini, M. A. Pimenta, R. B. Capaz, G. G. Samsonidze, G. Dresselhaus, M. S. Dresselhaus, J. Jiang, N. Kobayashi, A. Gruneis, R. Saito: Resonance {R}aman spectroscopy (n,m)-dependent effects in small diameter single-wall carbon nanotubes, Phys. Rev. B 71, 075401 (2005)

    Google Scholar 

  • R. B. Weisman, S. M. Bachilo: Dependence of optical transition energies on structure for single-walled carbon nanotubes, Nano Lett. 3, 1235–1238 (2003)

    Google Scholar 

  • C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, M. A. Pimenta: Optical transition energies for carbon nanotubes from resonant {R}aman spectroscopy, Phys. Rev. Lett. 93, 147406 (2004)

    Google Scholar 

  • H. Son, A. Reina, G. G. Samsonidze, R. Saito, A. Jorio, M. S. Dresselhaus, J. Kong: Raman characterization of electronic transition energies of metallic single-wall carbon nanotubes, Phys. Rev. B 74, 073406 (2006)

    Google Scholar 

  • H. Rauf, T. Pichler, R. Pfeiffer, F. Simon, H. Kuzmany, V. N. Popov: Detailed analysis of the {R}aman response of n-doped double-wall carbon nanotubes, Phys. Rev. B 74, 235419 (2006)

    Google Scholar 

  • M. Kalbac, L. Kavan, M. Zukalova, L. Dunsch: The intermediate frequency modes of single- and double-walled carbon nanotubes: {A} {R}aman spectroscopic and in situ spectroelectrochemical study, Chem. Eur. J. 12, 4451–4457 (2006)

    Google Scholar 

  • M. Kalbac, L. Kavan, M. Zukalova, L. Dunsch: Two positions of potassium in chemically doped {C60} peapods: {A}n in situ spectroelectrochemical study, J. Phys. Chem. B 108, 6275–6280 (2004)

    Google Scholar 

  • L. Kavan, M. Kalbac, M. Zukalova, L. Dunsch: Electrochemical and chemical redox doping of fullerene ({C60}) peapods, Carbon 44, 99–106 (2006)

    Google Scholar 

  • T. Pichler, A. Kukovecz, H. Kuzmany, H. Kataura, Y. Achiba: Quasicontinuous electron and hole doping of {C60} peapods, Phys. Rev. B 67, 125416 (2003)

    Google Scholar 

  • M. Kalbac, L. Kavan, M. Zukalova, L. Dunsch: Spectroelectrochemical recognition of chemical dopants in the inner space of carbon nanostructures, Nano 1, 219–227 (2006)

    Google Scholar 

  • T. Pichler, H. Kuzmany, H. Kataura, Y. Achiba: Metallic polymers of {C60} inside single-wall carbon nanotubes, Phys. Rev. Lett. 87, 267401–267414 (2001)

    Google Scholar 

  • L. Kavan, M. Kalbac, M. Zukalova, M. Krause, L. Dunsch: Electrochemical doping of double wall carbon nanotubes: {A}n in situ {R}aman spectroelectrochemical study, Chem. Phys. Chem. 5, 274–277 (2004)

    Google Scholar 

  • L. Kavan, M. Kalbac, M. Zukalova, M. Krause, L. Dunsch, H. Kataura: Redox doping of double-wall carbon nanotubes and {C60} peapods, Full. Nanotub. Carb. Nanostr. 13, 115–119 (2005)

    Google Scholar 

  • R. Pfeiffer, H. Kuzmany, C. Kramberger, C. Schaman, T. Pichler, H. Kataura, Y. Achiba, J. Kürti, V. Zolyomi: Unusual high degree of unperturbed environment in the interior of single wall carbon nanotubes, Phys. Rev. Lett. 90, 225501 (2003)

    Google Scholar 

  • R. Pfeiffer, F. Simon, H. Kuzmany, V. N. Popov: Fine structure of the {RBM} of double wall carbon nanotubes, Phys. Rev. B 72 (2005)

    Google Scholar 

  • G. Chen, S. Bandow, E. R. Margine, C. Nisoli, A. N. Kolmogorov, V. H. Crespi, R. Gupta, G. U. Sumanasekera, S. Iijima, P. C. Eklund: Chemically doped double walled carbon nanotubes, Phys. Rev. Lett. 90, 257403 (2003)

    Google Scholar 

  • M. Kalbac, L. Kavan, M. Zukalova, L. Dunsch: Electrochemical tuning of high energy phonon branches of double wall carbon nanotubes, Carbon 42, 2915–2920 (2004)

    Google Scholar 

  • M. Kalbac, L. Kavan, M. Zukalova, L. Dunsch: The influence of an extended fullerene cage: {A} study of chemical and electrochemical doping of {C70} peapods by in situ {R}aman spectroelectrochemistry, J. Phys. Chem. C 111, 1079–1085 (2007)

    Google Scholar 

  • A. Ilie, J. S. Bendall, D. Roy, E. Philip, M. L. H. Green: Effects of {KI} encapsulation in single walled carbon nanotubes by {R}aman and optical spectroscopy, J. Phys. Chem. B 110, 13848–13857 (2006)

    Google Scholar 

  • L. Guan, K. Suenaga, Z. Shi, Z. Gu, S. Iijima: Direct imaging of alkali metal site in {K}-doped fullerene peapods, Phys. Rev. Lett. 94, 045502 (2005)

    Google Scholar 

  • M. Kalbac, L. Kavan, M. Zukalova, H. Pelouchova, P. Janda, L. Dunsch: Isolated nanoribbons of carbon nanotubes and peapods, Chem. Phys. Chem. 6, 426–430 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Kavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kavan, L., Dunsch, L. (2007). Electrochemistry of Carbon Nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_18

Download citation

Publish with us

Policies and ethics