Skip to main content

Arrestins as Multi-Functional Signaling Adaptors

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

Arrestins are versatile regulators of cellular signaling expressed in every cell in the body. Arrestins bind active phosphorylated forms of their cognate G-protein-coupled receptors, shutting down G-protein activation and linking receptors to alternative signaling pathways. Arrestins directly interact with more than 20 surprisingly diverse proteins, such as several Src family kinases, ubiquitin ligases, protein phosphatases, microtubules, etc., and serve as scaffolds facilitating signaling in two MAP kinase cascades, leading to the activation of ERK1/2 and JNK3. A number of arrestin-binding partners are key players in signaling pathways that regulate cell proliferation, survival, and apoptotic death, which make arrestin interactions with these proteins inviting targets for therapeutic intervention. For example, enhancement of pro-survival or pro-apoptotic arrestin-dependent signaling is a promising strategy in treating disorders such as neurodegenerative diseases or cancer, respectively. Recent studies show that in the cell arrestin exists in at least three distinct conformations, free, receptor-bound, and microtubule-bound, with very different signaling capabilities. Precise identification of arrestin elements mediating its interactions with each partner and elucidation of conformational dependence of these interactions will pave the way to the development of molecular tools for targeted enhancement or attenuation of arrestin interactions with individual partners. This structural information is necessary to devise conventional drug-based approaches and to engineer specialized “designer” arrestins that can compensate for defects in receptor regulation associated with congenital disorders and/or redirect arrestin-mediated signaling to desired pathways. Arrestins are at the crossroads of crucial pathways that determine cell fate and behavior. Therefore, targeted manipulation of arrestin-dependent signaling has an enormous therapeutic potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackmann M, Wiech H, Mandelkow E (2000) Nonsaturable binding indicates clustering of tau on the microtubule surface in a paired helical filament-like conformation. J Biol Chem 275:30335–30343

    Article  PubMed  CAS  Google Scholar 

  • Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S (1991) G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumniorigenicity. Proc Natl Acad Sci USA 88:11354–11358

    Article  PubMed  CAS  Google Scholar 

  • Angers S, Salahpour A, Bouvier M (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 42:409–435

    Article  PubMed  CAS  Google Scholar 

  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267:17882–17890

    PubMed  CAS  Google Scholar 

  • Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–27500

    Article  PubMed  CAS  Google Scholar 

  • Barak LS, Oakley RH, Laporte SA, Caron MG (2001) Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci USA 98:93–98

    Article  PubMed  CAS  Google Scholar 

  • Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ (1987) Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Nat Acad Sci USA 84:8879–8882

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Gross CE, Qin L, Gurevich VV, Benovic JL, Gurevich EV (2005) L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol Dis 18:323–335

    Article  PubMed  CAS  Google Scholar 

  • Bychkov ER, Gurevich VV, Joyce JN, Benovic JL, Gurevich EV (2008) Arrestins and two receptor kinases are upregulated in Parkinson’s disease with dementia. Neurobiol Aging 29:379–396

    Article  PubMed  CAS  Google Scholar 

  • Carman CV, Benovic JL (1998) G-protein-coupled receptors: turn-ons and turn-offs. Curr Opin Neurobiol 8:335–344

    Article  PubMed  CAS  Google Scholar 

  • Carter JM, Gurevich VV, Prossnitz ER, Engen JR (2005) Conformational differences between arrestin2 and pre-activated mutants as revealed by hydrogen exchange mass spectrometry. J Mol Biol 351:865–878

    Article  PubMed  CAS  Google Scholar 

  • Celver J, Vishnivetskiy SA, Chavkin C, Gurevich VV (2002) Conservation of the phosphate-sensitive elements in the arrestin family of proteins. J Biol Chem 277:9043–9048

    Article  PubMed  CAS  Google Scholar 

  • Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ (2001) Beta-arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem 276:42509–42513

    Article  PubMed  CAS  Google Scholar 

  • Dinculescu A, McDowell JH, Amici SA, Dugger DR, Richards N, Hargrave PA, Smith WC (2002) Insertional mutagenesis and immunochemical analysis of visual arrestin interaction with rhodopsin. J Biol Chem 277:11703–11708

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G (2004) Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 14:303–317

    Article  PubMed  CAS  Google Scholar 

  • Goodman OB, Jr., Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    Article  PubMed  CAS  Google Scholar 

  • Gray-Keller MP, Detwiler PB, Benovic JL, Gurevich VV (1997) Arrestin with a single amino acid sustitution quenches light-activated rhodopsin in a phosphorylation independent fashion. Biochemistry 36:7058–7063

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV (1998) The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J Biol Chem 273:15501–15506

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV, Benovic JL (1992) Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction. J Biol Chem 267:21919–21923

    PubMed  CAS  Google Scholar 

  • Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin: Sequential multisite binding ensures strict selectivity towards light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638

    PubMed  CAS  Google Scholar 

  • Gurevich VV, Benovic JL (1995) Visual arrestin binding to rhodopsin: diverse functional roles of positively charged residues within the phosphorylation-recignition region of arrestin. J Biol Chem 270:6010–6016

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV, Benovic JL (1997) Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol Pharmacol 51:161–169

    PubMed  CAS  Google Scholar 

  • Gurevich VV, Gurevich EV (2003) The new face of active receptor bound arrestin attracts new partners. Structure 11:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. TIPS 25:59–112

    Google Scholar 

  • Gurevich EV, Gurevich VV (2006a) Arrestins are ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV, Gurevich EV (2006b) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic JL (1995) Arrestin interaction with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, b2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270:720–731

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV, Pals-Rylaarsdam R, Benovic JL, Hosey MM, Onorato JJ (1997) Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J Biol Chem 272:28849–28852

    Article  PubMed  CAS  Google Scholar 

  • Gurevich EV, Benovic JL, Gurevich VV (2002) Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience 109:421–436

    Article  PubMed  CAS  Google Scholar 

  • Gurevich EV, Benovic JL, Gurevich VV (2004) Arrestin2 expression selectively increases during neural differentiation. J Neurochem 91:1404–1416

    Article  PubMed  CAS  Google Scholar 

  • Gurevich VV, Hanson SM, Gurevich EV, Vishnivetskiy SA (2007) How rod arrestin achieved perfection: regulation of its availability and binding selectivity. pp 55–58. In: Fliesler SJ, Kisselev O (eds) Signal transduction in the retina. Methods in Signal Transduction Series, Boca Raton, FL, CRC Press

    Google Scholar 

  • Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 9:869–880

    Article  PubMed  CAS  Google Scholar 

  • Hanson SM, Gurevich VV (2006) The differential engagement of arrestin surface charges by the various functional forms of the receptor. J Biol Chem 281:3458–3462

    Article  PubMed  CAS  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV (2006a) Visual arrestin binding to microtubules involves a distinct conformational change. J Biol Chem 281:9765–9772

    Article  PubMed  CAS  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006b) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA 103:4900–4905

    Article  PubMed  CAS  Google Scholar 

  • Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV (2007a) Each rhodopsin molecule binds its own arrestin. Proc Nat Acad Sci USA 104:3125–3128

    Article  PubMed  CAS  Google Scholar 

  • Hanson SM, Cleghorn WM, Francis DJ, Vishnivetskiy SA, Raman D, Song S, Nair KS, Slepak VZ, Klug CS, Gurevich VV (2007b) Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol Biol 368:375–387

    Article  PubMed  CAS  Google Scholar 

  • Hiller G, Weber K (1978) Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell 14:795–804

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269

    Article  PubMed  CAS  Google Scholar 

  • Hunzicker-Dunn M, Gurevich VV, Casanova JE, Mukherjee S (2002) ARF6: a newly appreciated player in G protein-coupled receptor desensitization. FEBS Lett 521:3–8

    Article  PubMed  CAS  Google Scholar 

  • Key TA, Foutz TD, Gurevich VV, Sklar LA, Prossnitz ER (2003) N-formyl peptide receptor phosphorylation domains differentially regulate arrestin and agonist affinity. J Biol Chem 278:4041–4047

    Article  PubMed  CAS  Google Scholar 

  • Khoo DH, Parma J, Rajasoorya C, Ho SC, Vassart G (1999) A germline mutation of the thyrotropin receptor gene associated with thyrotoxicosis and mitral valve prolapse in a Chinese family. J Clin Endocrinol Metab 84:1459–1462

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Benovic JL (2002) Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem 277:30760–30768

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, Wei H, Lefkowitz RJ (2005) Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Nat Acad Sci USA 102:1442–1447

    Article  PubMed  CAS  Google Scholar 

  • Kovoor A, Celver J, Abdryashitov RI, Chavkin C, Gurevich VV (1999) Targeted construction of phosphorylation-independent b-arrestin mutants with constitutive activity in cells. J Biol Chem 274:6831–6834

    Article  PubMed  CAS  Google Scholar 

  • Kuhn H (1978) Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 17:4389–4395

    Article  PubMed  CAS  Google Scholar 

  • Kuhn H, Hall SW, Wilden U (1984) Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176:473–478

    Article  PubMed  CAS  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson sSG, Caron MG, Barak LS (1999) The 2-adrenergic receptor/arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Nat Acad Sci USA 96:3712–3717

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  PubMed  CAS  Google Scholar 

  • Li J, Edwards PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) Beta-arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ, Andexinger S, Pitcher J, Trukawinski S, Codina J, Faure JP, Caron MG, Lefkowitz RJ (1992) Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem 267:8558–8564

    PubMed  CAS  Google Scholar 

  • Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Nat Acad Sci USA 98:2449–2454

    Article  PubMed  CAS  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1515–1518

    Article  Google Scholar 

  • Mukherjee S, Gurevich VV, Jones JC, Casanova JE, Frank SR, Maizels ET, Bader MF, Kahn RA, Palczewski K, Aktories K, Hunzicker-Dunn M (2000) The ADP ribosylation factor nucleotide exchange factor ARNO promotes beta-arrestin release necessary for luteinizing hormone/choriogonadotropin receptor desensitization. Proc Natl Acad Sci USA 97:5901–5906

    Article  PubMed  CAS  Google Scholar 

  • Nair KS, Hanson SM, Kennedy MJ, Hurley JB, Gurevich VV, Slepak VZ (2004) Direct binding of visual arrestin to microtubules determines the differential subcellular localization of its splice variants in rod photoreceptors. J Biol Chem 279:41240–41248

    Article  PubMed  CAS  Google Scholar 

  • Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein–protein interactions. Neuron 46:555–567

    Article  PubMed  CAS  Google Scholar 

  • Nelson CD, Perry SJ, Regier DS, Prescott SM, Topham MK, Lefkowitz RJ (2007) Targeting of diacylglycerol degradation to M1 muscarinic receptors by beta-arrestins. Science 315:663–666

    Article  PubMed  CAS  Google Scholar 

  • Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS (2000) Differential affinities of visual arrestin, barrestin1, and barrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275:17201–17210

    Article  PubMed  CAS  Google Scholar 

  • Ohguro H, Palczewski K, Walsh KA, Johnson RS (1994) Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange. Protein Sci:2428–2434

    Google Scholar 

  • Orsini MJ, Benovic JL (1998) Characterization of dominant negative arrestins that inhibit beta2-adrenergic receptor internalization by distinct mechanisms. J Biol Chem 273:34616–34622

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Pulvermuller A, Buczylko J, Hofmann KP (1991) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem 266:18649–18654

    PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, LeTrong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  • Pals-Rylaarsdam R, Gurevich VV, Lee KB, Ptasienski J, Benovic JL, Hosey MM (1997) Internalization of the m2 muscarinic acetylcholine receptor: arrestin-independent and -dependent pathways. J Biol Chem 272:23682–23689

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Gurevich EV, Gurevich VV (2003) The nature of the arrestin × receptor complex determines the ultimate fate of the internalized receptor. J Biol Chem 278:11623–11632

    Article  PubMed  CAS  Google Scholar 

  • Parnot C, Miserey-Lenkei S, Bardin S, Corvol P, Clauser E (2002) Lessons from constitutively active mutants of G protein-coupled receptors. Trends Endocrinol Metab 13:336–343

    Article  PubMed  CAS  Google Scholar 

  • Paschke R (1996) Constitutively activating TSH receptor mutations as the cause of toxic thyroid adenoma, multinodular toxic goiter and autosomal dominant non autoimmune hyperthyroidism. Exp Clin Endocrinol Diabetes 104:129–132

    Article  PubMed  CAS  Google Scholar 

  • Pulvermuller A, Schroder K, Fischer T, Hofmann KP (2000) Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin. J Biol Chem 275:37679–37685

    Article  PubMed  CAS  Google Scholar 

  • Ren XR, Reiter E, Ahn S, Kim J, Chen W, Lefkowitz RJ (2005) Different G protein-coupled receptor kinases govern G protein and beta-arrestin mediated signaling of V2 vasopressin receptor. Proc Nat Acad Sci USA 102:1448–1453

    Article  PubMed  CAS  Google Scholar 

  • Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    Article  PubMed  CAS  Google Scholar 

  • Schipani E, Kruse K, Juppner H (1995) A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268:98–100

    Article  PubMed  CAS  Google Scholar 

  • Schleicher A, Kuhn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28:1770–1775

    Article  PubMed  CAS  Google Scholar 

  • Scott MG, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A (2002) Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem 277:37693–37701

    Article  PubMed  CAS  Google Scholar 

  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Shinohara T, Dietzschold B, Craft CM, Wistow G, Early JJ, Donoso LA, Horwitz J, Tao R (1987) Primary and secondary structure of bovine retinal S antigen (48-kDa protein). Proc Nat Acad Sci USA 84:6975–6979

    Article  PubMed  CAS  Google Scholar 

  • Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV (2006) Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 281:21491–21499

    Article  PubMed  CAS  Google Scholar 

  • Song X, Gurevich EV, Gurevich VV (2007) Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of binding sites. J Neurochem 103:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Sterne-Marr R, Gurevich VV, Goldsmith P, Bodine RC, Sanders C, Donoso LA, Benovic JL (1993) Polypeptide variants of beta-arrestin and arrestin3. J Biol Chem 268:15640–15648

    PubMed  CAS  Google Scholar 

  • Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3 Å: Evolution of receptor specificity. J Mol Biol 354:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274:11451–11454

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez M-G, Gurevich VV (2000) An additional phosphate-binding element in arrestin molecule: implications for the mechanism of arrestin activation. J Biol Chem 275:41049–41057

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskiy SA, Hirsch JA, Velez M-G, Gurevich YV, Gurevich VV (2002) Transition of arrestin in the active receptor-binding state requires an extended interdomain hinge. J Biol Chem 277:43961–43968

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV (2004) Mapping the arrestin–receptor interface: structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 279:1262–1268

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV (2007) Rhodopsin phosphorylation level required for arrestin binding: a threshold mechanism. J Biol Chem 282: 32075–32083

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Wu Y, Ge X, Ma L, Pei G (2003) Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 278:11648–11653

    Article  PubMed  CAS  Google Scholar 

  • Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ (2004) beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc Natl Acad Sci USA 101:8603–8607

    Article  PubMed  CAS  Google Scholar 

  • Wu N, Hanson SM, Francis DJ, Vishnivetskiy SA, Thibonnier M, Klug CS, Shoham M, Gurevich VV (2006) Arrestin binding to calmodulin: a direct interaction between two ubiquitous signaling proteins. J Mol Biol 364:955–963

    Article  PubMed  CAS  Google Scholar 

  • Xiao K, Shenoy SK, Nobles K, Lefkowitz RJ (2004) Activation-dependent conformational changes in {beta}-arrestin 2. J Biol Chem 279:55744–55753

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurevich, V.V., Gurevich, E.V., Cleghorn, W.M. (2008). Arrestins as Multi-Functional Signaling Adaptors. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_2

Download citation

Publish with us

Policies and ethics