Skip to main content

A-Kinase Anchoring Proteins as the Basis for cAMP Signaling

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

Common challenges to any cell are the processing of the extracellular stimuli it receives into intracellular signaling cascades that initiate a multitude of diverse biological functions. However, many of these stimuli act via a common signaling pathway, suggesting the cell must somehow discriminate between different stimuli and respond accordingly. Subcellular targeting through the association with adaptor and scaffolding proteins has emerged as a key mechanism by which cells maintain signaling specificity. Compartmentation of cAMP signaling is maintained by the clustering of cAMP signaling enzymes in discrete units by the scaffolding protein A-kinase anchoring proteins (AKAP). In doing so, AKAPs provide the molecular architecture for the cAMP micordomains that underlie the spacial-temporal control of cAMP signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

PKA:

cAMP-dependent protein kinase

C:

PKA catalytic subunit

RI:

PKA regulatory subunit type I

RII:

PKA regulatory subunit type II

AKAP:

A-kinase anchoring protein

PDE:

Phosphodiesterase

RyR:

Ryanodine receptor

PP2A:

Protein phosphatase 2A

Epac:

Exchange protein activated by cAMP

References

  • Adamson PB, Gilbert, EM (2006) Reducing the risk of sudden death in heart failure with beta-blockers. J Card Fail 12(9):734–746

    Article  PubMed  CAS  Google Scholar 

  • Alto NM, Soderling SH et al (2003) Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring. Proc Natl Acad Sci USA 100(8):4445–4450

    Article  PubMed  CAS  Google Scholar 

  • Antos CL, Frey N et al (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a. Circ Res 89(11):997–1004

    Article  PubMed  CAS  Google Scholar 

  • Bisognano JD, Weinberger HD et al (2000) Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 32(5):817–830

    Article  PubMed  CAS  Google Scholar 

  • Brunton LL, Hayes JS et al (1979) Hormonally specific phosphorylation of cardiac troponin I and activation of glycogen phosphorylase. Nature 280(5717):78–80

    Article  PubMed  CAS  Google Scholar 

  • Carlisle Michel JJ, Dodge KL et al (2004) PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem J 381(Pt 3):587–592

    Article  PubMed  CAS  Google Scholar 

  • Carr DW, Hausken ZE et al (1992) Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem 267(19):13376–13382

    PubMed  CAS  Google Scholar 

  • Coghlan VM, Perrino BA et al (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267(5194):108–111

    Article  PubMed  CAS  Google Scholar 

  • Colledge M, Dean RA et al (2000) Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 27(1):107–119

    Article  PubMed  CAS  Google Scholar 

  • Corbin JD, Sugden PH et al (1977) Compartmentalization of adenosine 3′:5′-monophosphate and adenosine 3-:5:-monophosphate-dependent protein kinase in heart tissue. J Biol Chem 252(11):3854–3861

    PubMed  CAS  Google Scholar 

  • Dodge K, Scott JD (2000) AKAP79 and the evolution of the AKAP model. FEBS Lett 476(1–2):58–61

    Article  PubMed  CAS  Google Scholar 

  • Dodge KL, Khouangsathiene S et al (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20(8):1921–1930

    Article  PubMed  CAS  Google Scholar 

  • Dodge-Kafka KL, Soughayer J et al (2005) The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437(7058):574–578

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt S, Hein L et al (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 96(12):7059–7064

    Article  PubMed  CAS  Google Scholar 

  • Fink MA, Zakhary DR et al (2001) AKAP-mediated targeting of protein kinase a regulates contractility in cardiac myocytes. Circ Res 88(3):291–297

    PubMed  CAS  Google Scholar 

  • Fraser ID, Tavalin SJ et al (1998) A novel lipid-anchored A-kinase anchoring protein facilitates cAMP-responsive membrane events. EMBO J 17(8):2261–2272

    Article  PubMed  CAS  Google Scholar 

  • Fraser ID, Cong M et al (2000) Assembly of an A kinase-anchoring protein-beta(2)-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Curr Biol 10(7):409–412

    Article  PubMed  CAS  Google Scholar 

  • Gray PC, Johnson BD et al (1998) Primary structure and function of an A kinase anchoring protein associated with calcium channels. Neuron 20(5):1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Hayes JS, Brunton LL et al (1979) Hormonally specific expression of cardiac protein kinase activity. Proc Natl Acad Sci USA 76(4):1570–1574

    Article  PubMed  CAS  Google Scholar 

  • Hayes JS, Brunton LL et al (1980) Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem 255(11):5113–5119

    PubMed  CAS  Google Scholar 

  • Hoffmann R, Baillie GS et al (1999) The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J 18(4):893–903

    Article  PubMed  CAS  Google Scholar 

  • Hulme JT, Lin TW et al (2003) Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci USA 100(22):13093–13098

    Article  PubMed  CAS  Google Scholar 

  • Iwase M, Uechi M et al (1997) Cardiomyopathy induced by cardiac Gs alpha overexpression. Am J Physiol 272(1 Pt 2):H585–H589

    PubMed  CAS  Google Scholar 

  • Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci USA 93(1):295–299

    Article  PubMed  CAS  Google Scholar 

  • Kapiloff MS, Schillace RV et al (1999) mAKAP: an A-kinase anchoring protein targeted to the nuclear membrane of differentiated myocytes. J Cell Sci 112(Pt 16):2725–2736

    PubMed  CAS  Google Scholar 

  • Kapiloff MS, Jackson N et al (2001) mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 114(Pt 17):3167–3176

    PubMed  CAS  Google Scholar 

  • Klauck TM, Faux MC et al (1996) Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271(5255):1589–1592

    Article  PubMed  CAS  Google Scholar 

  • Lehnart SE, Wehrens XH et al (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123(1):25–35

    Article  PubMed  CAS  Google Scholar 

  • Lester LB, Langeberg LK et al (1997) Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc Natl Acad Sci USA 94(26):14942–14947

    Article  PubMed  CAS  Google Scholar 

  • Marx SO (2003) Ion channel macromolecular compexes in the heart. J Mol Cell Cardiol 35:37–44

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Reiken S et al (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376

    Article  PubMed  CAS  Google Scholar 

  • Michel JJ, Townley IK et al (2005) Spatial restriction of PDK1 activation cascades by anchoring to mAKAPalpha. Mol Cell 20(5):661–672

    Article  PubMed  CAS  Google Scholar 

  • Mongillo M, McSorley T et al (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95(1):67–75

    Article  PubMed  CAS  Google Scholar 

  • Movsesian MA (2004) Altered cAMP-mediated signalling and it role in the pathogenesis of dilated cardiomyopathy. Cardiovasc Res 62:450–459

    Article  PubMed  CAS  Google Scholar 

  • Newlon MG, Roy M et al (2001) A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 20(7):1651–1662

    Article  PubMed  CAS  Google Scholar 

  • Onose Y, Oki T et al (2001) Effect of cilnidipine on left ventricular diastolic function in hypertensive patients as assessed by pulsed Doppler echocardiography and pulsed tissue Doppler imaging. Jpn Circ J 65(4):305–309

    Article  PubMed  CAS  Google Scholar 

  • Pare GC, Easlick JL et al (2004) Nesprin-1a contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Exp Cell Res 303:388–399

    Article  CAS  Google Scholar 

  • Pare GC, Bauman AL et al (2005) The mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling. J Cell Sci 118(Pt 23):5637–5646

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C, Carr DW et al (1994) Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons. Nature 368(6474):853–856

    Article  PubMed  CAS  Google Scholar 

  • Roth DM, Gao MH et al (1999) Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99(24):3099–3102

    PubMed  CAS  Google Scholar 

  • Roth DM, Bayat H et al (2002) Adenylyl cyclase increases survival in cardiomyopathy. Circulation 105(16):1989–1994

    Article  PubMed  CAS  Google Scholar 

  • Ruehr ML, Russell MA et al (2003) Targeting of protein kinase A by muscle A kinase-anchoring protein (mAKAP) regulates phosphorylation and function of the skeletal muscle ryanodine receptor. J Biol Chem 278(27):24831–24836

    Article  PubMed  CAS  Google Scholar 

  • Salpeter SR, Ormiston TM et al (2004) Cardiovascular effects of beta-agonists in patients with asthma and COPD: a meta-analysis. Chest 125(6):2309–2321

    Article  PubMed  CAS  Google Scholar 

  • Schwinger RH, Munch G et al (1999) Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31(3):479–491

    Article  PubMed  Google Scholar 

  • Scott JD (1991) Cyclic nucleotide-dependent protein kinases. Pharmacol Ther 50(1):123–145

    Article  PubMed  CAS  Google Scholar 

  • Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271(28):16526–16534

    Article  PubMed  CAS  Google Scholar 

  • Shin DD, Brandimarte F et al (2007) Review of current and investigational pharmacologic agents for acute heart failure syndromes. Am J Cardiol 99(2A):S4–S23

    Article  CAS  Google Scholar 

  • Stokka AJ, Gesellchen F et al (2006) Characterization of A-kinase-anchoring disruptors using a solution-based assay. Biochem J 400(3):493–499

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Saito Y et al (2005) Hypertrophic responses to cardiotrophin-1 are not mediated by STAT3, but via a MEK5-ERK5 pathway in cultured cardiomyocytes. J Mol Cell Cardiol 38(1):185–192

    Article  PubMed  CAS  Google Scholar 

  • Taylor SS, Buechler JA et al (1990) cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005

    Article  PubMed  CAS  Google Scholar 

  • Westphal RS, Tavalin SJ et al (1999) Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285(5424):93–96

    Article  PubMed  CAS  Google Scholar 

  • Westphal RS, Soderling SH et al (2000) Scar/WAVE-1, a Wiskott-Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J 19(17):4589–600

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M (2004) Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res 94(7):866–873

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dodge-Kafka, K.L., Bauman, A., Kapiloff, M.S. (2008). A-Kinase Anchoring Proteins as the Basis for cAMP Signaling. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_1

Download citation

Publish with us

Policies and ethics