Skip to main content

Climate-related Change in Terrestrial and Freshwater Ecosystems

  • Chapter

Part of the book series: Regional Climate Studies ((REGCLIMATE))

Abstract

Ecosystems on land, whether in a comparatively natural state or artificially constructed and managed, are a fundamental part of the environment in which most humans live. They also provide or help to control a variety of resources and intangible values vital to the health and economic conditions of human society (e.g. Costanza et al. 1997). These so-called ecosystem services, which are particularly important in a relatively populous region such as that of the Baltic Sea Basin, include the provision of food, fibre and wood products. Ecosystems also contribute to controlling water supplies, air and water quality, and conditions for the maintenance of biodiversity. Through their part in the Earth’s carbon, water and energy cycles they may ameliorate — or exacerbate — climate change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aanes R, Saether BE, Øritsland NA (2000) Fluctuations of an introduced population of Svalbard reindeer: The effects of density dependence and climatic variation. Ecography 23:437–443

    Google Scholar 

  • Aars J, Ims RA (2002) Climatic and intrinsic determinants of population demography: The winter dynamics of tundra vole populations. Ecology 83:3449–3456

    Google Scholar 

  • Aasa A, Jaagus J, Ahas R, Sepp M(2004) The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. Int J Climatol 24:1551–1564

    Google Scholar 

  • Abgeti MD, Smol JP (1995) Winter limnology: A comparison of physical chemical and biological characteristics in two temperate lakes during ice cover. Hydrobiologia 304:221–234

    Google Scholar 

  • Abildtrup J, Audsley E, Fekete-Farkas M, Giupponi C, Gylling M, Rosato P, Rounsevell M (2006) Socio-economic scenario development for the assessment of climate change impacts on agricultural land use: A pairwise comparison approach. Env Sci Pol 9:101–115

    Google Scholar 

  • ACIA (2004) Impacts of a Warming Arctic. Cambridge University Press, Cambridge

    Google Scholar 

  • ACIA (2005) Arctic Climate Impact Assessment. Cambridge University Press, New York

    Google Scholar 

  • Adrian R, Deneke R, Mischke U, Stellmacher R, Lederer P (1995) A long-term study of the Heiligensee (1975–1992) Evidence for effects of climatic change on the dynamics of eutrophied lake ecosystems. Arch Hydrobiol 133:315–337

    Google Scholar 

  • Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwat Biol 41:621–632

    Google Scholar 

  • Ahas R (1999) Long-term phytoornitho-and ichthyophenological time-series analysis in Estonia. Int J Biometeorol 42:119–124

    Google Scholar 

  • Ahas R, Aasa A (2004) Attribution of Estonian phytoornitho-and ichthyophenological trends with parameters of changing climate. 16th Conference on Biometeorology and Aerobiology 23–27 August 2004, Vancouver Canada http://ams.confex.com/ams/pdfpapers/78288.pdf

  • Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51:17–26

    Google Scholar 

  • Ahas R, Tarand A, Meitern H (1998) Temporal variability of the phenological time series in Estonia. In: Ahas R, Tarand A, Meitern H (eds) Country Case Study on Climate Change Impacts and Adaptation. Assessments in the Republic of Estonia. Report to the UNEP/GEF Project No GF/2200-96-45 Stockholm Environment Institute — Tallinn, pp. 28–30

    Google Scholar 

  • Ahas R, Jaagus J, Aasa A (2000) The phenological calendar of Estonia and its correlation with mean air temperature. Int J Biometeorol 44:159–166

    Google Scholar 

  • Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002) Changes in European spring phenology. Int J Climatol 22:1727–1738

    Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis canopy properties and plant production to rising CO2. New Phytologist165:351–372

    Google Scholar 

  • Alatalo JM, Totland Ø (1997) Response to simulated climatic change in an alpine and subarctic pollen-risk strategist Silene acaulis. Glob Change Biol 3 S 1:74–79

    Google Scholar 

  • Alcamo J, Kok K, Busch G, Priess J, Eickhout B, Rounsevell M, Rothman D, Heistermann M (2006) Searching for the future of land: Scenarios from the local to global scale. In: Lambin EF, Geist H (eds) Land-use and Land-cover Change: Local Processes Global Impacts. The IGBP Series. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Alekseev A, Soroka AR (2002) Scots pine growth trends in northwestern Kola Peninsula as an indicator of positive changes in the carbon cycle. Climatic Change 55:183–196

    Google Scholar 

  • Algesten G, Sobek S, Bergstrom AK, Agren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Glob Change Biol 10:141–147

    Google Scholar 

  • Andersen HE, Kronvang B, Larsen SE (1999) Agricultural practices and diffuse nitrogen pollution in Denmark: Empirical leaching and catchment models. Water Sci Tech 39:257–264

    Google Scholar 

  • Andersen HE, Kronvang B, Larsen SE (2005) Development validation and application of Danish empirical phosphorus models. J Hydrol 304:355–365

    Google Scholar 

  • Andersson FO, Ågren GI, Führer E (2000) Sustainable tree biomass production. Forest Ecol Manag 132:51–62

    Google Scholar 

  • Andersson L, Arheimer B (2003) Modelling of human and climate impact on nitrogen load in a Swedish river 1885–1994. Hydrobiologia 497:63–77

    Google Scholar 

  • Andreeva EA (2003) The present state of macrozoobenthos in Lake Ilmen. In: Simola H, Terzhevik AY, Viljanen M, Holopainen IK (eds) Proceedings of 4th International Lake Ladoga Symposium 2002, University of Joensuu, Publications of Karelian Institute 138

    Google Scholar 

  • Angerbjörn A, Tannerfeldt M, Lundberg H (2001) Geographical and temporal patterns of lemming population dynamics in Fennoscandia. Ecography 24:298–308

    Google Scholar 

  • Anneville O, Souissi S, Gammeter S, Straile D (2004) Seasonal and inter-annual scales of variability in phytoplankton assemblages: Comparison of phytoplankton dynamics in three peri-alpine lakes over a period of 28 years. Freshwat Biol 49:98–115

    Google Scholar 

  • Anon (2002) State of Environment. The Ministry of Environment of the Republic of Lithuania, Vilnius

    Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513

    Google Scholar 

  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Response patterns of tundra plant species to experimental warming: A meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511

    Google Scholar 

  • Arheimer B, Wittgren HB (2002) Modelling nitrogen removal in potential wetlands at the catchment scale. Ecol Eng 19:63–80

    Google Scholar 

  • Arheimer B, Andersson L, Larsson M, Lindström G, Olsson J, Pers BC (2004a) Modelling diffuse nutrient flow in eutrophication control scenarios. Water Sci Tech 49:37–45

    Google Scholar 

  • Arheimer B, Torstensson G, Wittgren HB (2004b) Landscape planning to reduce coastal eutrophication: Agricultural practices and constructed wetlands. Landsc Urban Plann 67:205–215

    Google Scholar 

  • Assel RA, Robertson DM (1995) Changes in winter air temperature near Lake Michigan 1851–1993 as determined from regional ice records. Limnol Oceanogr 40:165–176

    Google Scholar 

  • Assel RA, Cronk K, Norton D (2003) Recent trends in Laurentian Great lakes ice cover. Climatic Change 57:185–204

    Google Scholar 

  • Auclair AND, Lill JT, Revenga C (1996) The role of climate variability and global warming in the dieback of northern hardwoods. Water Air Soil Pollut 91:163–186

    Google Scholar 

  • Audsley E, Pearn KR, Simota C, Cojocaru G, Koutsidou E, Rounsevell MDA, Trnka M, Alexandrov V (2006) What can scenario modelling tell us about future European scale land use and what not? Agr Ecosyst Env 9:148–162

    Google Scholar 

  • Aurela M, Laurila T, Tuovinen J (2002) Annual CO2 balance of a subarctic fen in northern Europe: Importance of the wintertime efflux. J Geophys Res 107:4607

    Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286

    Google Scholar 

  • Barabasz B, Górz A (1998) Argiope bruennichi (Scopoli 1772) Rare and insufficiently examined spider species in Poland. Fragmenta Faunistica 41:255–267

    Google Scholar 

  • Barklund P (1994) Svårtolkad ekdöd (Oak dieback). In: Ekfrämjandet 50 år Wallin and Dahlholm boktryckeri. AB Lund, Sweden (in Swedish)

    Google Scholar 

  • Barklund P, Ericsson A, Gemmel P, Johansson U, Olsson M, Walheim M, Åhman G (1995) Bark och vedskador hos granar med kådflöde — kådfiödessjukan hos gran (Bark and wood damage with resin flow in Norway Spruce — Resin flow disease in Norway Spruce). Swedish University of Agricultural Sciences (SLU), Report Info/Skog. 15, Alnarp, Sweden (in Swedish)

    Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Ann Rev Ecol Systemat 21:167–196

    Google Scholar 

  • Bechmann M, Eggestad HO, Vagstad N (1998) Nitrogen balances and leaching in four agricultural catchments in southeastern Norway. Env Poll 102 S1:439–499

    Google Scholar 

  • Beerling DJ, Terry AC, Mitchell PL, Jones DG, Lee JA, Callaghan TV (2001) Time to chill: Effects of simulated global change on leaf ice nucleation temperatures of sub-Arctic vegetation. Am J Bot 88: 628–633

    Google Scholar 

  • Behrendt H, Bachor A (1998) Point and diffuse load of nutrients to the Baltic Sea by river basins of northeast Germany (Mecklenburg-Vorpommern). Water Sci Tech 38:147–155

    Google Scholar 

  • Behrendt H, Stellmacher R, Oldberg M (1987) Long-term changes in water quality parameters of a shallow eutrophic lake and their relations to meteorologic and hydrologie elements. In Soloman SI, Beran M, Hogg W (eds) The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resour. IAHS Publications 168:535–544

    Google Scholar 

  • Benndorf J, Kranich J, Mehner T, Wagner A (2001) Temperature impact on the midsummer decline of Daphnia galeata: An analysis of long-term data from the biomanipulated Bautzen Reservoir (Germany). Freshwat Biol 46:199–211

    Google Scholar 

  • Bergh J, McMurtrie RE, Linder S (1998) Climatic factors controlling the productivity of Norway spruce: A model-based analysis. Forest Ecol Manag 110:127–139

    Google Scholar 

  • Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. Forest Ecol Manag 119:51–62

    Google Scholar 

  • Bergh J, Freeman M, Sigurdsson BD, Kellomäki S, Laitinen K, Niinistö S, Peltola H, Linder S (2003) Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries. Forest Ecol Manag 183:327–340

    Google Scholar 

  • Bergh J, Linder S, Bergström J (2005) Potential production of Norway spruce in Sweden. Forest Ecol Manag 204:1–20

    Google Scholar 

  • Bergh J, Räisänen J, Freeman M, Linder S (2007) Effects of global change on net primary production in northern Europe — a model-based analysis on regional climate scenarios. Glob Change Biol (in press)

    Google Scholar 

  • Bergström AK, Algesten G, Sobek S, Tranvik L, Jansson M (2004) Emission of CO2 from hydroelectric reservoirs in northern Sweden. Arch Hydrobiol 159:25–42

    Google Scholar 

  • Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950–1990. Ambio 23:280–2870

    Google Scholar 

  • Berner EK, Berner RA (1996) Global Environment: Water Air and Geochemical Cycles. Prentice-Hall, Upper Saddle River, NJ, USA

    Google Scholar 

  • Bernes C (1996) The Nordic Arctic Environment — Unspoilt Expoited Polluted? The Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Berry PM, Rounsevell MDA, Harrison PA, Audsley E (2006) Assessing the vulnerability of agricultural land use and species to climate change and the role of policy in facilitating adaptation. Env Sci Pol 9:189–204

    Google Scholar 

  • Beuker E, Kolström M, Kellomäki S (1996) Changes in wood production of Picea abies and Pinus sylvestris under a warmer climate: Comparison of field measurements and results of a mathematical model. Silva Fennica 30:239–246

    Google Scholar 

  • Blenckner T (2005) A conceptual model of climate related effects on lake ecosystems. Hydrobiologia 533:1–14

    Google Scholar 

  • Blenckner T, Omstedt A, Rummukainen M (2002a) A Swedish case study of contemporary and possible future consequences of climate change on lake function. Aquat Sci 64:171–184

    Google Scholar 

  • Blenckner T, Pettersson K, Padisak J (2002b) Lake plankton as tracer to discover climate signals. Verh Proc Trav SIL 28:1324–1327

    Google Scholar 

  • Blenckner T, Järvinen M, Weyhenmeyer G (2004) Atmospheric circulation and its impact on ice phenology in Scandinavia. Boreal Env Res 9:371–380

    Google Scholar 

  • Bochenski Z (1993) Catalogue of fossil and subfossil birds of Poland. Acta Biol Cracov 36:329–460

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Google Scholar 

  • Bouraoui F, Grizzetti B, Granlund K, Rekolainen S, Bidoglio G (2004) Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Climatic Change 66:109–126

    Google Scholar 

  • Boyer EW, Hornberger GM, Bencala KE, McKnight DM (1997) Response characteristics of DOC flushing in an alpine catchment. Hydrolog Process 11:1635–1647

    Google Scholar 

  • Bradshaw RHW, Holmqvist BH, Cowling SA, Sykes MT (2000) The effects of climate change on the distribution and management of Picea abies in southern Scandinavia. Can J Forest Res 30:1992–1998

    Google Scholar 

  • Brommer JE (2004) The range margins of northern birds shift polewards. Annales Zoologici Fennici 41:391–397

    Google Scholar 

  • Brooker RW, Carlsson BÅ, Callaghan TV (2001) Carex bigelowii Torrey ex Schweinitz (C. rigida Good., non Schrank; C. hyperborea Drejer) Biological Flora of the British Isles. J Ecol 89:1072–1095

    Google Scholar 

  • Bukantis A, Gulbinas Z, Kazakevicius S, Kilkus K, Mikelinskiene A, Morkunaite R, Rimkus E, Samuila M, Stankunavicius G, Valiuškevicius G, Zaromskis R (2001) Klimato svyravim? poveikis fiziniams geografiniams procesams Lietuvoje (The Influence of Climatic Variations on Physical Geographical Processes in Lithuania) Monograph, Geografijos Inst., Vilnius (in Lithuanian) Cairns DM, Moen J (2004) Herbivory influences tree lines. J Ecol 92:1019–1024

    Google Scholar 

  • Callaghan TV, Carlsson BÅ, Svensson BM (1996) Some apparently paradoxical aspects of the life cycles demography and population dynamics of plants from the subarctic Abisko area. Ecol Bull 45: 133–143

    Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G, Schaphoff S, Sitch S, Zöckler C (2004a) Climate change and UV-B impacts on Arctic tundra and polar desert ecosystems. Ambio 33: 385–479

    Google Scholar 

  • Callaghan TV, Johansson M, Heal OW, Saelthun NR, Barkved L, Bayfield N, Brandt O, Brooker R, Christiansen HH, Hoye TT, Humlun O, Järvinen A, Jonasson C, Kohler J, Magnusson B, Meltofte H, Mortensen L, Neuvonen S, Pearce I, Rasch M, Turner L, Hasholt B, Huhta E, Leskinen E, Nielsen N, Siikamäki P (2004b) Environmental changes in the North Atlantic region: SCANNET as a collaborative approach for documenting understanding and predicting changes. Ambio Special Report 13:39–50

    Google Scholar 

  • Canadell JG, Ciais P, Cox P, Heimann M (2004) Quantifying understanding and managing the carbon cycle in the next decades. Climatic Change 67:147–160

    Google Scholar 

  • Carey SK (2003) Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment. Permafrost & Periglacial Processes 14:161–171

    Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. BioScience 35:634–639

    Google Scholar 

  • Carpenter SR, Fisher SG, Grimm NB, Kitchell JF (1992) Global change and freshwater ecosystems. Ann Rev Ecol Systemat 23:119–139

    Google Scholar 

  • Carpenter SR, Pingali PL, Bennett EM, Zurek MB (2005) Ecosystems and Human Well-being — Scenarios. Island Press, Washington, D.C.

    Google Scholar 

  • CAVM Team (2003) Circumpolar Arctic Vegetation Map Scale 1:7500000 Conservation of Arctic Flora and Fauna (CAFF). Map No 1, US Fish & Wildlife Service, Anchorage, Alaska

    Google Scholar 

  • CCIRG (1996) Review of the Potential Effects of Climate Change in the United Kingdom. UK Climate Change Impacts Review Group (CCIRG). HMSO, London

    Google Scholar 

  • Chapin FS III, Schultze ED, Mooney HA (1990) The ecology and economics of storage in plants. Ann Rev Ecol Systemat 21:423–447

    Google Scholar 

  • Chapin FS III, Berman M, Callaghan TV, Convey P, Crépin AS, Danell K, Ducklow H, Forbes B, Kofinas G, McGuire AD, Nuttall M, Virginia R, Young O, Zimov SA, Christensen T, Godduhn A, Murphy EJ, Wall D Zöckler C (2005) Polar systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and Human Well-Being: Current State and Trends. Volume I: Millennium Ecosystem Assessment Series. Island Press, Washington DC, pp. 717–743

    Google Scholar 

  • Chapin FS III, Hoel M, Carpenter SR, Lubchenco J, Walker B, Callaghan TV, Folke C, Levin SA, Mäler KG, Nilsson C, Barrett S, Berkes F, Crépin AS, Danell K, Rosswall T, Starrett D, Xepapadeas A, Zimov SA (2006) Building resilience and adaptation to manage Arctic change. Ambio 35:198–202

    Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agr Forest Meteorol 108:101–112

    Google Scholar 

  • Choi JS (1998) Lake ecosystem responses to rapid climate change. Env Monit Assess 49:281–290

    Google Scholar 

  • Christensen TR, Jonasson S, Callaghan TV, Havström M (1999) On the potential CO2 release from tundra soils in a changing climate. Appl Soil Ecol 11:127–134

    Google Scholar 

  • Christensen TR, Johansson T, Åkerman JH, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys Res Lett 31:L04501

    Google Scholar 

  • Chu C, Mandrak NE, Minns CK (2005) Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Diversity & Distributions 11:299–310

    Google Scholar 

  • Chuine I, Kramer K, Hänninen H (2003) Plant development models. In: Schwartz MD (ed) Phenology: An Integrative Environmental Science. Kluwer, pp. 217–235

    Google Scholar 

  • Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoenix GK, Gwynn Jones D, Jonasson S, Chapin FS III, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjörnsson B, Aerts R (2001) Global change and Arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? J Ecol 89:984–994

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Google Scholar 

  • Coulson SJ, Leinass HP, Ims RA, Søvik G (2000) Experimental manipulation of winter surface ice layer: The effects on a high arctic soil microarthropod community. Ecography 23:299–306

    Google Scholar 

  • Cummins CP (2003) UV-B radiation climate change and frogs — the importance of phenology. Annales Zoologici Fennici 40:61–67

    Google Scholar 

  • Dahl E (1990) Probable effects of climatic change due to the greenhouse effect on plant productivity and survival in North Europe. In: Holten JI, Paulsen G, Oechel WC (eds) Effects of Climate Change on Terrestrial Ecosystems. Norwegian Institute for Nature Research, Trondheim, pp. 81–83

    Google Scholar 

  • de Koning F, Olschewski R, Veldkamp E, Benitez P, Lopez-Ulloa M, Schlichter T, de Urquiza M (2005) The ecological and economic potential of carbon sequestration in forests: Examples from South America. Ambio 34:224–229

    Google Scholar 

  • de Stasio BT, Hill DK, Kleinhans JM, Nibbelink NP, Magnuson JJ (1996) Potential effects of global climate change on small north-temperate lakes: Physics fish and plankton. Limnol Oceanogr 41:1136–1149

    Google Scholar 

  • delBarrio G, Harrison PA, Berry PM, Butt N (2006) Impacts of climate change on species’ distributions in a temperate and a Mediterranean area: Comparison and implications for policy. Env Sci Pol 9:129–147

    Google Scholar 

  • Diehl S (2002) Phytoplankton light and nutrients in a gradient of mixing depths: Theory. Ecology 83: 386–398

    Google Scholar 

  • Dirnbock T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417

    Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L) under different climatic and environmental conditions in Europe — a dendroecological study. Forest Ecol Manag 173:63–78

    Google Scholar 

  • Dormann CF, Woodin SJ (2002) Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Funct Ecol 16:4–17

    Google Scholar 

  • Dorrepaal E, Aerts R, Cornelissen JHC, Callaghan TV, Logtestijn RSP (2004) Summer warming and increased winter snow cover affect Sphagnum fuscum growth structure and production in a sub-arctic bog. Glob Change Biol 10:93–104

    Google Scholar 

  • Drake BG, Gonzalez-Meier MA, Long SP (1997) More efficient plants: A consequence of rising atmospheric CO2? Ann Rev Plant Physiol Plant Mol Biol 48:609–639

    Google Scholar 

  • Drever JI (1997) The Geochemistry of Natural Waters. Prentice Hall

    Google Scholar 

  • Duraiappah A, Naeem S, Agardy T, Ash NJ, Cooper HD, Díaz S, Faith DP, Mace G, McNeely JA, Mooney HA, Oteng-Yeboah AA, Pereira HM, Polasky S, Prip C, Reid WV, Samper C, Schei PJ, Scholes R, Schutyser F, van Jaarsveld A(2005) Ecosystems and Human Well-being: Biodiversity Synthesis. Island Press, Washington DC

    Google Scholar 

  • Dzikiewicz M (2000) Activities in nonpoint pollution control in rural areas of Poland. Ecol Eng 14: 429–434

    Google Scholar 

  • Eilertsen SM (2002) Utilization of abandoned coastal meadows in northern Norway by reindeer. PhD thesis, University of Tromsø, Norway

    Google Scholar 

  • Ellenberg H (1986) Vegetation Mitteleuropas mit den Alpen, 4th ed. Ulmer, Stuttgart, Germany

    Google Scholar 

  • Elliott JA, Thackeray SJ, Huntingford C, Jones RG (2005) Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshwat Biol 50:1404–1411

    Google Scholar 

  • Emanuelsson U (1987) Human influence on vegetation in the Torneträsk area during the last three centuries. Ecol Bull 38:95–111

    Google Scholar 

  • Enell M, Fejes J (1995) The nitrogen load to the Baltic Sea — Present situation acceptable future load and suggested source reduction. Water Air Soil Pollut 85:877–882

    Google Scholar 

  • Ewert F, Rounsevell MDA, Reginster I, Metzger MJ, Leemans R (2005) Future scenarios of European agricultural land use: Estimating changes in crop productivity. Agr Ecosyst Environ 107:101–116

    Google Scholar 

  • Federal Forest Inventory (2005) The Federal Forest Inventory, Bundesministerium für Ernährung Landwirtschaft und Verbraucherschutz, Germany, http://www.bundeswaldinventur.de, site visited in August 2005

  • Fiedler W (2003) Recent changes in migratory behaviour of birds: A compilation of field observations and ringing data. In: Berhold P, Gwinner E, Sonnenschein E (eds) Avian Migration. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Filatov NN, Nazarova LY, Salo YA (2003) Climate changes and Water Resour in the region of the largest European lakes. In: Simola H, Terzhevik AY, Viljanen M, Holopainen IK (eds) Proceedings of 4th International Lake Ladoga Symposium, 2002, University of Joensuu, Publications of The Karelian Institute 138:31–36

    Google Scholar 

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54

    Google Scholar 

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198

    Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785–785

    Google Scholar 

  • Freeman M, Morén AS, Strömmer M, Linder S (2005) Climate change impacts on forests in Europe: Biological impact mechanisms. In: Kellomäki S, Leinonen S (eds) Management of European Forests Under Changing Climatic Conditions. University of Joensuu, Faculty of Forestry Research, Notes 163:46–115

    Google Scholar 

  • Gaedke U, Ollinger D, Bäuerle E, Straile D (1998) The impact of the interannual variability in hydrodynamic conditions on the plankton development in Lake Constance in spring and summer. Arch Hydrobiol, Special Issues Advancing Limnology 53:565–585

    Google Scholar 

  • Garten CT Jr, Ashwood TL (2003) A landscape level analysis of potential excess nitrogen in eastcentral North Carolina. Water Air Soil Pollut 146:3–21

    Google Scholar 

  • Gelbrecht J, Lengsfeld H, Pöthig R, Opitz D (2005) Temporal and spatial variation of phosphorus input retention and loss in a small catchment of NE Germany. J Hydrol 304:151–165

    Google Scholar 

  • George DG, Harris GP (1985) The effect of climate on long-term changes in the crustacean zooplankton biomass of Lake Windermere UK. Nature 316:536–539

    Google Scholar 

  • George DG, Hewitt DP, Lund JW, Smyly WJP (1990) The relative effects of enrichment and climate change on the long-term dynamics of daphnia in Esthwaite Water, Cumbria. Freshwat Biol 23:55–70

    Google Scholar 

  • George DG, Hewitt DP (1999) The influence of year-to-year variations in the winter weather on the dynamics of Daphnia and Eudiaptomus in Esthwaite Water, Cumbria. Funct Ecol 13:45–54

    Google Scholar 

  • Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45:1058–1066

    Google Scholar 

  • Gerten D, Adrian R (2001) Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol Oceanogr 46:448–455

    Google Scholar 

  • Gerten D, Adrian R (2002) Species-specific changes in the phenology and peak abundance of freshwater copepods in response to warm summers. Freshwat Biol 47:2163–2173

    Google Scholar 

  • Gitz V, Ciais P (2003) Amplifying effects of land-use change on future atmospheric CO2 levels. Glob Biogeochem Cy 17

    Google Scholar 

  • Giupponi C, Ramanzin M, Sturaro E, Fuser S (2006) Climate and land use changes biodiversity and agri-environmental measures in the Belluno province, Italy. Env Sci Pol 9:163–173

    Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544

    Google Scholar 

  • Graglia E, Jonasson S, Michelsen A, Schmidt IK (1997) Effects of shading nutrient application and warming on leaf growth and shoot densities of dwarf shrubs in two arctic-alpine plant communities. Ecoscience 4:191–198

    Google Scholar 

  • Graham LP (2004) Climate change effects on river flow to the Baltic Sea. Ambio 33:235–241

    Google Scholar 

  • Graham LP, Bergström S(2001) Water balance modelling in the Baltic Sea drainage basin — analysis of meteorological and hydrological approaches. Meteorol Atmos Phys 77:45–60

    Google Scholar 

  • Granlund K, Rankinen K, Lepistö A (2004) Testing the INCA model in a small agricultural catchment in southern Finland. Hydrol Earth Syst Sci 8:717–728

    Google Scholar 

  • Granstedt A, Seuri P, Thomsson O (2004) Effective recycling agriculture around the Baltic Sea. Ekologiskt Landbruk 41

    Google Scholar 

  • Gren IM, Söderqvist T, Wulff F (1997) Nutrient reductions to the Baltic Sea: Ecology costs and benefits. J Env Manag 51:123–143

    Google Scholar 

  • Grigor’ev AS, Trapeznikov YA(2002) Level of Lake Ladoga at possible climate changes. Water Resour 29:155–159

    Google Scholar 

  • Grimvall A, Stålnacke P, Tonderski A (2000) Time scales of nutrient losses from land to sea — a European perspective. Ecol Eng 14:363–371

    Google Scholar 

  • Grunzweig JM, Sparrow SD, Chapin FS (2003) Impact of forest conversion to agriculture on carbon and nitrogen mineralization in subarctic Alaska. Biogeochemistry 64:271–296

    Google Scholar 

  • Guo QF (2000) Climate change and biodiversity conservation in Great Plains agroecosystems. Glob Env Change 10:289–298

    Google Scholar 

  • Gustafson A, Fleischer S, Joelsson A (1998) Decreased leaching and increased retention potential cooperative measures to reduce diffuse nitrogen on a watershed level. Water Sci Tech 38:181–189

    Google Scholar 

  • Gutschick VP, BassiriRad H (2003) Extreme events as shaping physiology ecology and evolution of plants: Toward a unified definition and evaluation of their consequences. New Phytologist 160: 21–42

    Google Scholar 

  • Gwynn-Jones D, Lee JA, Callaghan TV (1997) Effects of enhanced UV-B radiation and elevated carbon dioxide concentrations on a sub-Arctic forest heath ecosystem. Plant Ecol 128:243–249

    Google Scholar 

  • Hagström Å, Azam F, Kuparinen J, Zweifel UL (2001) Pelagic plankton growth and resource limitations in the Baltic Sea. In: Wulff F, Rahm L, Larsson P (eds) A Systems Analysis of the Baltic Sea. Springer, Berlin Heidelberg New York, pp. 177–210

    Google Scholar 

  • Håkanson L, Ostapenia A, Parparov A, Hambright D, Boulion VV (2003) Management criteria for lake ecosystems applied to case studies of changes in nutrient loading and climate change. Lakes & Reservoirs: Research & Management 8:141–155

    Google Scholar 

  • Hållmarker M (2002) Skogsgränsförändringar i Abisko (Forest limit changes in Abisko). Masters thesis in Environmental Science, Gothenburg University, Sweden (in Swedish)

    Google Scholar 

  • Hamrick JL (2004) Response of forest trees to Global Environ Changes. Forest Ecol Manag 197:323–335

    Google Scholar 

  • Hänninen H, Beuker E, Johnsen Ø Leinonen I, Murray M, Sheppard L, Skrøppa T (2001) Impacts of climate change on cold hardiness of conifers. In: Bigras FJ, Colombo SJ (eds) Conifer Cold Hardiness. Kluwer, Dordrecht, pp. 305–327

    Google Scholar 

  • Hansen AJ, Neilson RP, Dale VH, Fiather CH, Iverson LR, Currie DJ, Shafer S, Cook R, Bartlein PJ (2001) Global change in forests: Responses of species communities and biomes. BioScience 51: 765–779

    Google Scholar 

  • Hargeby A, Blindow I, Hansson LA (2004) Shifts between clear and turbid states in a shallow lake: Multi-causal stress from climate nutrients and biotic interactions. Arch Hydrobiol 161:433–454

    Google Scholar 

  • Harrison PA, Berry PM, Butt N, New M (2006) Modelling climate change impacts on species’ distributions at the European scale: Implications for conservation policy. Env Sci Pol 9:116–128

    Google Scholar 

  • Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999) Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos 86: 331–343

    Google Scholar 

  • Havström M, Callaghan TV, Jonasson S (1995) Effects of simulated climate change on the sexual reproductive effort of Cassiope tetragonal. In: Callaghan TV, Oechel WC, Gilmanov T, Molau U, Maxwell B, Tyson M, Sveinbjörnsson B, Holtén JI (eds) Global Change and Arctic Terrestrial Ecosystems. Proceedings of Papers Contributed to the International Conference, 21–26 August 1993, Oppdal, Norway. European Commission Ecosystems Research Report 10, pp. 109–114

    Google Scholar 

  • Heathwaite L, Sharpley A, Gburek W (2000) A conceptual approach for integrating phosphorus and nitrogen management at watershed scales. J Env Qual 29:158–166

    Google Scholar 

  • Heide OM (1993) Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plantarum 88:531–540

    Google Scholar 

  • Heil M (2001) The ecological concept of cost of induced systemic resistance (ISR). Eur J Plant Pathol 107:137–146

    Google Scholar 

  • HELCOM (1993) Second Baltic Sea Pollution Load Compilation. Baltic Sea Environment Proceedings 45. HELCOM, Helsinki, Finland

    Google Scholar 

  • HELCOM (2005) Nutrient Pollution to the Baltic Sea in 2000. Baltic Sea Environment Proceedings 100. HELCOM, Helsinki, Finland

    Google Scholar 

  • Helle T (2001) Mountain birch forests and reindeer husbandry. In: Wielgolaski FE (ed) Nordic Mountain Birch Ecosystems. Man and Biosphere Series. The Parthenon Publishing Group, New York, pp. 279–291

    Google Scholar 

  • Henry GHR, Molau U (1997) Tundra plants and climate change: The International Tundra Experiment (ITEX). Glob Change Biol 3,Suppl 1:1–9

    Google Scholar 

  • Hersteinsson P, MacDonald DW (1992) Interspecific competition and the geographical distribution of red and arctic foxes Vulpes vulpes and Alopex lagopus. Oikos 64:505–515

    Google Scholar 

  • Hill JK, Thomas CD, Huntley B (1999) Climate and habitat availability determine 20th century changes in a butterfly’s range margin. Proc Roy Soc London, Series B 266:1197–1206

    Google Scholar 

  • Høgda KA, Karlsen SR, Solheim I (2001) Climatic change impact on growing season in Fennoscandia studied by a time series of NOAA AVHRR NDVI data. Proceedings of IGARSS 9–13 July 2001, Sydney, Australia

    Google Scholar 

  • Holman IP, Rounsevell MDA, Shackley S, Harrison PA, Nicholls RJ, Berry PM, Audsley E (2005a) A regional multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK: Part I. Methodology. Climatic Change 71:9–41

    Google Scholar 

  • Holman IP, Rounsevell MDA, Shackley S, Harrison PA, Nicholls RJ, Berry PM, Audsley E (2005b) A regional multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK: Part II. Results. Climatic Change 71:43–73

    Google Scholar 

  • Holmgren B, Tjus M (1996) Summer air temperatures and tree line dynamics at Abisko. Ecological Bulletins 45:159–169

    Google Scholar 

  • Holmsgaard E (1986) Historical development of wind damage in conifers in Denmark. In: Communities CotE (ed) Minimizing Wind Damage to Coniferous Stands. Løvenholm Castle, Denmark, pp. 2–4

    Google Scholar 

  • Huisman J, Jonker RR, Zoneveld C, Weissing FJ (1999) Competition for light between phytoplankton species: Experimental tests of mechanistic theory. Ecology 80:211–222

    Google Scholar 

  • Humborg C, Conley DJ, Rahm L, Wulff F, Cociasu A, Ittekkot V (2000) Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29:45–50

    Google Scholar 

  • Humborg C, Blomqvist S, Avsan E, Bergensund Y, Smedberg E, Brink J, Mörth CM (2002) Hydrological alterations with river damming in northern Sweden: Implications for weathering and river biogeochemistry. Glob Biogeochem Cy 16:1039

    Google Scholar 

  • Humborg C, Danielsson Å, Sjöberg B, Green M (2003) Nutrient land-sea fluxes in oligotrophic and pristine estuaries of the Gulf of Bothnia, Baltic Sea. Estuar Coast Shelf Sci 56:783–795

    Google Scholar 

  • Humborg C, Smedberg E, Blomqvist S, Mörth CM, Brink J, Rahm L, Danielsson Å, Sahlberg J (2004) Nutrient variations in boreal and subarctic Swedish rivers: Landscape control of land-sea fluxes. Limnol Oceanogr 49:1871–1883

    Google Scholar 

  • Huntley B (1991) How plants respond to climate change: Migration rates individualism and the consequences for plant communities. Ann Bot 67:15–22

    Google Scholar 

  • Hyenstrand P, Blomqvist P, Pettersson A (1998) Factors determining cyanobacterial success in aquatic systems — a literature review. Arch Hydrobiol. Special Issues Advancing Limnology 51:41–62

    Google Scholar 

  • Iital A, Stålnacke P, Deelstra J, Loigu E, Pihlak M (2005) Effects of large-scale changes in emissions on nutrient concentrations in Estonian rivers in the Lake Peipsi drainage basin. J Hydrol 304:261–273

    Google Scholar 

  • Iital A, Loigu E, Vagstad N (2003) Nutrient losses and N &P balances in small agricultural watersheds in Estonia. Nord Hydrol 34:531–542

    Google Scholar 

  • Ilyashuk BP, Ilyashuk EA (2001) Response of alpine chironomid communities (Lake Chuna Kola Peninsula northwestern Russia) to atmospheric contamination. J Paleolimnol 25:467–475

    Google Scholar 

  • Ingri J, Widerlund A, Land M (2005) Geochemistry of major elements in a pristine boreal river system; Hydrological compartments and flow paths. Aquat Geochem 11:57–88

    Google Scholar 

  • IPCC (2001) Climate Change 2001: The Scientific Basis. Cambridge University Press Cambridge

    Google Scholar 

  • Ittekkot V (2003) A new story from the ol’ man river. Science 301:56–58

    Google Scholar 

  • Iversen J (1944) Viscum, Hedera and Ilex as climatic indicators. A contribution to the study of pastglacial temperature climate. Geologiska Föreningens Förhandlingar 66:463–483

    Google Scholar 

  • Jaagus J (1997) The impact of climate change on the snow cover pattern in Estonia. Climatic Change0 36:65–77

    Google Scholar 

  • Jansons V, Busmanis P, Dzalbe I, Kirsteina D (2003) Catchment and drainage field nitrogen balances and nitrogen loss in three agriculturally influenced Latvian watersheds. Eur J Agron 20:173–179

    Google Scholar 

  • Jansson A, Folke C, Langaas S (1998) Quantifying the nitrogen retention capacity of natural wetlands in the large-scale drainage basin of the Baltic Sea. Landsc Ecol 13:249–262

    Google Scholar 

  • Jansson A, Folke C, Rockström J, Gordon L (1999) Linking freshwater flows and ecosystem services appropriated by people: The case of the Baltic Sea drainage basin. Ecosystems 2:351–366

    Google Scholar 

  • Jansson BO (1997) The Baltic Sea: Current and future status and impact of agriculture. Ambio 26: 424–431

    Google Scholar 

  • Järvet A (1999) Ice regime of Lake Võrtsjärv and its long-term changes. In: Jaagus J (ed) Uurimusi Eesti Kliimast. Publicationes Instituti Geographici Universitatis Tartuensis 85:171–179

    Google Scholar 

  • Järvet A (2004) Influence of hydrological factors and human impact on the ecological state of shallow Lake Võrtsjärv in Estonia. Dissertationes Geographicae Universitatis Tartuensis 19:1–119

    Google Scholar 

  • Järvinen M, Rask M, Ruuhijärvi J, Arvola L (2002) Temporal coherence in water temperature and chemistry under the ice of boreal lakes (Finland). Water Resour 36:3949–3956

    Google Scholar 

  • Jassby AD, Powell TM, Goldman CR (1990) Interannual fluctuations in primary production: Direct physical effects and the trophic cascade at Castle Lake, California. Limnol Oceanogr 35:1021–1038

    Google Scholar 

  • Jensen MN (2003) Consensus on ecological impacts remains elusive. Science 299:38

    Google Scholar 

  • Jeppesen E, Sondergard M, Jensen JP (2003) Climatic warming and regime shifts in lake food webs — some comments. Limnol Oceanogr 48:1346–1349

    Google Scholar 

  • Johnson D, Campbell CD, Lee JA, Callaghan TV, Gwynn-Jones D (2002) Nitrogen storage (communication arising): UV-B radiation and soil microbial communities. Nature 416:82–83

    Google Scholar 

  • Johnsson H, Hoffmann M (1998) Nitrogen leaching from agricultural land in Sweden. Ambio 27:481–488

    Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV (1999) Responses in microbes and plants to changed temperature nutrient and light regimes in the Arctic. Ecology 80:1828–1843

    Google Scholar 

  • Jonasson S, Chapin FS III, Shaver GR (2001) Biogeochemistry in the Arctic: Patterns processes and controls. In: Schulze ED, Heimann M, Harrison SP, Holland EA, Lloyd JJ, Prentice IC, Schimmel D (eds) Global Biogeochem Cy in the Climate System. Academic Press, San Diego, pp. 139–150

    Google Scholar 

  • Jones MH, Bay C, Nordenhäll U (1997) Effects of experimental warming on arctic willows (Salix spp): A comparison of responses from the Canadian High Arctic, Alaskan Arctic, and Swedish Subarctic. Glob Change Biol 3,Suppl. 1:55–60

    Google Scholar 

  • Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management climate and elevated CO2. New Phytologist 164:423–439

    Google Scholar 

  • Jonnsson A, Karlsson J, Jansson M (2003) Sources of carbon dioxide supersaturation in clearwater and humic lakes in northern Sweden. Ecosystems 6:224–235

    Google Scholar 

  • Jonsson LJ, Wilander P (1999) Is the wasp like spider, Argiope bruennichi, established in Sweden? Entomologisk Tidskrift 120:17–22

    Google Scholar 

  • Jönsson AM (2005) Tracing the impact of adverse environmental conditions on the frost sensitivity in trees. J Sustain Forest 21:3–73

    Google Scholar 

  • Jönsson AM, Linderson ML, Stjernquist I, Schlyter P, Bärring L (2004) Climate change and the effect of temperature backlashes causing frost damage in Picea abies. Glob Plan Change 44:195–207

    Google Scholar 

  • Juday GP, Barber V, Vaganov E, Rupp S, Sparrow S, Yarie J, Linderholm H, Berg E, D’Arrigo R, Duffy P, Eggertsson O, Furyaev VV, Hogg EH, Huttunen S, Jacoby G, Kaplunov VYa, Kellomaki S, Kirdyanov AV, Lewis CE, Linder S, Naurzbaev MM, Pleshikov FI, Savva YuV, Sidorova OV, Stakanov VD, Tchebakova NM, Valendik EN, Vedrova EF, Wilmking M (2005) Forests, land management and agriculture. In: ACIA (ed) Arctic Climate Impact Assessment. Cambridge University Press, New York, pp. 781–862

    Google Scholar 

  • Kangur K, Möls T, Milius A, Laugaste R (2003) Response of phytoplankton communities to altered nutrient content and water level fluctuations in the large shallow Lake Peipus. In: Simola H, Terzhevik AY, Viljanen M, Holopainen IK (eds) Proceedings of 4th International Lake Ladoga Symposium 2002. University of Joensuu, Publications of Karelian Institute 138:148–153

    Google Scholar 

  • Kankaala P, Ojala A, Tulonen T, Haapamäki J, Arvola L (2000) Response of littoral vegetation on climate warming in the boreal zone; an experimental simulation. Aquat Ecol 34:433–444

    Google Scholar 

  • Kankaala P, Ojala A, Tulonen T, Arvola L (2002) Changes in nutrient retention capacity of boreal aquatic ecosystems under climate warming: A simulation study. Hydrobiologia 469:67–76

    Google Scholar 

  • Kankaala P, Käki T, Mäkelä S, Ojala A, Pajunen H, Arvola L (2005) Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes. Glob Change Biol 11:145–153 Kankaanpää S, Carter T (2004) Construction of European Forest Land Use Scenarios for the 21st Century. The Finnish Environment Institute, Helsinki

    Google Scholar 

  • Karjalainen T, Pussinen A, Liski J, Nabuurs GJ, Erhard M, Eggers T, Sonntag M, Mohren GMJ (2002) An approach towards an estimate of the impact of forest management and climate change on European forest sector carbon budget: Germany as a case study. Forest Ecol Manag 162:87–103

    Google Scholar 

  • Karlsson J, Jonsson A, Jansson M (2005) Productivity of high-latitude lakes: Climate effect inferred from altitude gradient. Glob Change Biol 11:710–715

    Google Scholar 

  • Karlsson PS, Bylund H, Neuvonen S, Heino S, Tjus M (2003) Climatic response of budburst in the mountain birch at two areas in northern Fennoscandia and possible responses to global change. Ecography 26:617–625

    Google Scholar 

  • Karnosky D (2003) Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: Knowledge gaps. Environ Int 29:161–169

    Google Scholar 

  • Karvinen S, Välkky E, Torniainen T (2005) Idän Metsätieto Luoteis-Venäjän Metsätalouden Taskutieto Metla, Kopijyvä, Kuopio, Finland (Eastern Forest Information. Handbook on northwestern Russian Forest Economy, in Finnish)

    Google Scholar 

  • Kaufmann RK, D’ Arrigo RD, Laskowski C, Myneni RB, Zhou L, Davi NK (2004) The effect of growing season and summer greenness on northern forests. Geophys Res Lett 31:L09205

    Google Scholar 

  • Kellomäki S, Kollström M (1993) Computations on the yield of timber by Scots pine when subjected to various levels of thinning under changing climate in southern Finland. Forest Ecol Manag 59:237–255

    Google Scholar 

  • Kellomäki S, Leinonen S (2005) Management of European Forests Under Changing Climatic Conditions. Final Report of the Project “Silvicultural Response Strategies to Climatic Change in Management of European Forests” funded by the European Union under the Contract EVK2-2000-00723 (SilviStrat). University of Joensuu, Faculty of Forestry Research. Notes 163:1–4–27

    Google Scholar 

  • Kellomäki S, Väisänen H (1997) Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecol Model 97:121–140

    Google Scholar 

  • Keup-Thiel E, Göttel H, Jacob D (2006) Regional climate simulations for the Barents Sea region. Boreal Env Res 11:1–12

    Google Scholar 

  • Khalili M, Ebbersten S, Mosiej J, Kull A, Palang H (1997) The changing face of agriculture — Land use and farm structure. In: Bodin, B, Ebbersten S (eds) Food and Fibres. Sustainable Agriculture, Forestry and Fishery. A Sustainable Baltic Region, Session 4 Baltic University Programme, Uppsala University, pp. 11–14

    Google Scholar 

  • Kickert RN, Tonella G, Simonov A, Krupa SV (1999) Predictive modeling of effects under global change. Env Poll 100:87–132

    Google Scholar 

  • Kilkus K (1998) Ezeru vandens lygis klimato svyravimai indikatoriniu savybiu analize. (Lake levels and climatic fluctuations: Analysis of indicatory qualities) Geografijos metrastis 31:53–61 (in Latvian)

    Google Scholar 

  • King JA, Bradley RI, Harrison R, Carter AD (2004) Carbon sequestration and saving potential associated with changes to the management of agricultural soils in England. Soil Use Manag 20:394–402

    Google Scholar 

  • Klavins M, Briede A, Rodionov V, Kokorite I, Frisk T (2002) Long-term changes of the river runoff in Latvia. Boreal Env Res 7:447–456

    Google Scholar 

  • Klein DR (1999) The roles of climate and insularity in establishment and persistence of Rangifer tarandus populations in the high Arctic. In: Hofgaard A, Ball JP, Danell K, Callaghan TV (eds) Animal responses to global climate change in the North. Ecol Bull 47:96–104

    Google Scholar 

  • Klein DR, Baskin LM, Bogoslovskaya LS, Danell K, Gunn A, Irons DB, Kofinas GP, Kovacs KM, Magomedova M, Meehan RH, Russell DE, Valkenburg P (2005) Management and conservation of wildlife in a changing arctic environment. In: ACIA (ed) Arctic Climate Impact Assessment, Cambridge University Press, New York, pp. 597–648

    Google Scholar 

  • Knight CG, Staneva MP (2002) Climate change research in central and eastern Europe. GeoJournal 57:117–137

    Google Scholar 

  • Koca D, Smith B, Sykes MT (2006) Modelling regional climate change effects on Swedish ecosystems. Climatic Change 78:381–406

    Google Scholar 

  • Kohler J, Brandt O (2004) Regional Assessment of Climatic Variability for SCANNET Stations. Scandinavian/North European Network of Terrestrial Field Bases Work package 5. Report to the EU, NPI, Tromsø, Norway

    Google Scholar 

  • Kohler J, Brandt O, Johansson M, Callaghan T (2006) A long-term arctic snow depth record from Abisko, northern Sweden, 1913–2004. Polar Res 25:1–113

    Google Scholar 

  • Kondratyev SA, Efimova LK, Markova EG (2002) Estimation of hydrological regime of drainage basin changes and inflow in the Lake depend on climatic fluctuations. In: Rumyantsev VA, Drabkova VG (eds) Lake Ladoga Past, Present and Future. Nauka, St. Petersburg, pp. 269–282

    Google Scholar 

  • Kont A, Jaagus J, Oja T, Järvet A, Rivis R (2002) Biophysical impacts of climate change on some terrestrial ecosystems in Estonia. GeoJournal 57:169–181

    Google Scholar 

  • Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: Effects of changing climate detected on a regional scale. Glob Ecol Biogeogr 12:403–410

    Google Scholar 

  • Körner C (2003) Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Phil Trans Roy Soc Lond A 361:2023–2041

    Google Scholar 

  • Kortelainen P, Saukkonen S, Mattsson T (1997) Leaching of nitrogen from forested catchments in Finland. Glob Biogeochem Cy 11:627–638

    Google Scholar 

  • Kozak I, Menshutkin V, Jóźwina M, Potaczala G (2002) Computer simulation of fir forest dynamics in the Bieszczady Mountains in response to climate change. J Forest Sci 48:425–431

    Google Scholar 

  • Kozlov MV, Berlina NG (2002) Decline in length of the summer season in the Kola Peninsula, Russia. Climatic Change 54:387–398

    Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Google Scholar 

  • Kristiansen S, Hoell EE (2002) The importance of silicon for marine production. Hydrobiologia 484: 21–31

    Google Scholar 

  • Kronvang B, Grant R, Larsen SE, Svendsen LM, Kristensen P (1995) Non-point-source nutrient losses to the aquatic environment in Denmark — impact of agriculture. Mar Freshwat Res 46:167–177

    Google Scholar 

  • Kronvang B, Svendsen LM, Jensen JP, Dørge J (1999) Scenario analysis of nutrient management at the river basin scale. Hydrobiologia 410:207–212

    Google Scholar 

  • Kronvang B, Bechmann M, Pedersen ML, Flynn N (2003) Phosphorus dynamics and export in streams draining micro-catchments: Development of empirical models. Zeitschrift für Pflanzenernährung and Bodenkunde 166:469–474

    Google Scholar 

  • Kronvang B, Jeppesen E, Conley DJ, Søndergaard M, Larsen SE, Ovesen NB, Carstensen J (2005) Nutrient pressures and ecological responses to nutrient loading redusctions in Danish streams, lakes and coastal waters. J Hydrol 304:274–288

    Google Scholar 

  • Kull A, Oja T(2001) Influence of climate change on nutrient flows in boreonemoral fioodplain ecosystem. In: Villacampa Y, Brebbia CA, Uso JL (eds) Ecosystems and Sustainable Development III. Advances in Ecological Sciences 10 WIT Press, Southampton, pp. 585–594

    Google Scholar 

  • Kull A, Kull A, Uuemaa E, Kuusemets V, Mander Ü (2005) Modelling of excess nitrogen in small rural catchments. Agr Ecosyst Environ 108:45–56

    Google Scholar 

  • Kullman L (1993) Tree limit dynamics of Betula pubescens ssp. tortuosa in relation to climate variability: evidence from central Sweden. J Veget Sci 4:765–772

    Google Scholar 

  • Kullman L (1997) Tree-limit stress and disturbance. A 25-year survey of geoecological change in the Scandes mountains of Sweden. Geografiska Annaler 79A: 139–165

    Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90: 68–77

    Google Scholar 

  • Kullman L (2003) Recent reversal of Neoglacial climatic cooling trend in the Swedish Scandes as evidenced by birch tree-limit rise. Glob Planet Change 36:77–88

    Google Scholar 

  • Kulmala A, Leinonen L, Ruoho-Airola T, Salmi T, Waidén J (1998) Air quality trends in Finland. In: Air Quality Measurements 1998. Finnish Meteorological Institute, Helsinki, pp. 1–91

    Google Scholar 

  • Kuusemets V, Mander Ü (2002) Nutrient flows and management of a small watershed. Landsc Ecol 17Suppl 1: 59–68

    Google Scholar 

  • Kuusemets V, Mander Ü, Lõhmus K, Ivask M (2001) Nitrogen and phosphorus variation in shallow groundwater and assimilation in plants in complex riparian buffer zones. Water Sci Tech 44:615–622

    Google Scholar 

  • Kuusisto E (1987) An analysis of the longest ice observation series made on Finnish lakes. Fennica 17:123–132

    Google Scholar 

  • Lacointe A (2000) Carbon allocation among tree organs: A review of basic processes and representation in functional-structural tree models. Ann Forest Sci 57:521–533

    Google Scholar 

  • Laine K, Skre O, Wielgolaski FE (2003) Human Interactions with the Mountain Birch Ecosystem: Implications for Sustainable Development (HIBECO) Final report to the EU. Oulu University, Finland

    Google Scholar 

  • Lal R (2003) Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degrad Dev 14:309–322

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geotherma 123:1–22

    Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li XB, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skanes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu JC (2001) The causes of land-use and land-cover change: Moving beyond the myths. Global Environ Change — Human and Policy Dimensions 11:261–269

    Google Scholar 

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241

    Google Scholar 

  • Lampert W, Muck P (1985) Multiple aspects of food limitation in Zooplankton communities: The Daphnia-Eudiaptomus example. Arch Hydrobiol Beiheft Ergebnisse Limnologie 21:311–321

    Google Scholar 

  • Lapenis A, Shvidenko A, Shepaschenko D, Nilsson S, Aiyyer A (2005) Acclimation of Russian forests to recent changes in climate. Glob Change Biol 11:2090–2102

    Google Scholar 

  • Larcher W (1995) Physiological Plant Ecology 3rd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Larsen JB (1995) Ecological stability of forests and sustainable silviculture. Forest Ecol Manag 73: 75–84

    Google Scholar 

  • Lasch P, Lindner M, Erhard M, Suckow F, Wenzel A (2002) Regional impact assessment on forest structure and functions under climate change — the Brandenburg case study. Forest Ecol Manag 162:73–86

    Google Scholar 

  • Lasch P, Badeck FW, Suckow F, Lindner M, Mohr P (2005) Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). Forest Ecol Manag 207:59–74

    Google Scholar 

  • Lavorel S, Quétier F, Thébault A, Daigney S, Davies ID, De Chazal J, VISTA consortium (2006) Vulnerability to land use change of services provided by alpine landscapes. In: Price MF (ed) Global Change in Mountain Regions. Sapiens Publishing Perth UK, pp. 215–216

    Google Scholar 

  • Laznik M, Stålnacke P, Grimvall A, Wittgren HB (1999) Riverine input of nutrients to the Gulf of Riga — temporal and spatial variation. J Mar Syst 23:11–25

    Google Scholar 

  • Lehikoinen E, Gustafsson E, Aalto T, Alho P, Klemola H, Laine J, Normaja J, Numminen T, Rainio K (2003) Varsinais-Suomen Linnut (Birds of Southwest Finland). Turun lintutieteellinen yhdistys ry Turku, Finland (in Finnish)

    Google Scholar 

  • Lehner B, Döll P (2001) Europe’s droughts today and in the future. In: Lehner B, Henrichs T, Döll P, Alcamo J (eds) Euro Wasser. Model-based Assessment of European Water. Resour and Hydrology in the Face of Global Change. Center for Environmental Systems Research. University of Kassel, Germany

    Google Scholar 

  • Leith H(1974) Phenology and Seasonality Modeling. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lepers E, Lambin EF, Janetos AC, DeFries R, Achard F, Ramankutty N, Scholes RJ (2005) A synthesis of information on rapid land-cover change for the period 1981–2000. BioScience 55:115–124

    Google Scholar 

  • Lepistö A, Andersson L, Arheimer B, Sundblad K (1995) Influence of catchment characteristics forestry activities and deposition on nitrogen export from small forested catchments. Water Air Soil Pollut 84:81–102

    Google Scholar 

  • LeRoux X, Lacointe A, Escobar-Gutiérrez A, LeDizès S (2001) Carbon-based models of individual tree growth: A critical appraisal. Ann Forest Sci 58:469–506

    Google Scholar 

  • Levy PE, Cannell MGR, Friend AD (2004) Modelling the impact of future changes in climate CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Glob Env Change 14:21–30

    Google Scholar 

  • Lin P (1995) Adaptations to Temperature in Fish: Salmonids Centrarchids and Percids. PhD thesis. University of Toronto, Canada

    Google Scholar 

  • Linder S, Flower-Ellis JGK (1992) Environmental and physiological constrains to forest yield. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of Forest Ecosystems to Environmental Changes. Elsevier, London, pp. 149–164

    Google Scholar 

  • Linderholm HW (2002) Twentieth-century Scots pine growth variations in the central Scandinavian mountains related to climate change. Arctic Antarct Alpine Res 34:440–449

    Google Scholar 

  • Lindner M (2000) Developing adaptive forest management strategies to cope with climate change. Tree Physiology 20:299–307

    Google Scholar 

  • Lindner M, Lasch P, Badeck F, Beguiristain P, Junge S, Kellomäki S, Peltola H, Gracia C, Sabate S, Jäger D, Lexer M, Freeman F (2005) SilviStrat model evaluation exercises. In: Kellomäki S, Leinonen S (eds) Management of European Forests under Changing Climatic Conditions. University of Joensuu, Faculty of Forestry. Research Notes 163

    Google Scholar 

  • Linkosalo T, Carter TR, Häkkinen R, Hari P (2000) Predicting spring phenology and frost damage risk of Betula spp under climatic warming: A comparison of two models. Tree Physiology 20:1175–1182

    Google Scholar 

  • Livingstone DM (1997) Break-up dates of alpine lakes as proxy data for local and regional air temperatures. Climatic Change 37:407–439

    Google Scholar 

  • Livingstone DM (1999) Ice-break up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and the North Atlantic Oscillation. Limnol Oceanogr 44:1486–1497

    Google Scholar 

  • Livingstone DM, Dokulil MT (2001) Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnol Oceanogr 46:1220–1227

    Google Scholar 

  • Loehle C, LeBlanc D (1996) Model-based assessments of climate change effects on forests: A critical review. Ecol Model 90:1–31

    Google Scholar 

  • Löf M, Welander NT (2000) Carry-over effects on growth and transpiration in Fagus sylvatica L. seedlings after drought at various stages of development. Can J Forest Res 30:468–475

    Google Scholar 

  • Löfgren S, Gustafson A, Steineck S, Stålnacke P (1999) Agricultural development and nutrient flows in the Baltic states and Sweden after 1988. Ambio 28:320–327

    Google Scholar 

  • Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689

    Google Scholar 

  • Ludwig W, Amiotte-Suchet P, Probst JL (1999) Enhanced chemical weathering of rocks during the last glacial maximum: A sink for atmospheric CO2? Chem Geol 159:147–161

    Google Scholar 

  • Luoto M, Seppälä M (2003) Thermokarst ponds as indicators of the former distribution of palsas. in Finnish Lapland. Permafrost and Periglacial Processes 14:19–27

    Google Scholar 

  • Maak K, von Storch H (1997) Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L in Northern Germany. Int J Biometeorol 41:5–12

    Google Scholar 

  • MacGillivray CW, Grime JP, The ISP Team (1995) Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Funct Ecol 9:640–649

    Google Scholar 

  • Magnuson JJ, Meissner JD, Hill DK (1990) Potential changes in thermal habitat of Great Lakes fish after global climate warming. Trans Am Fish Soc 119:254–264

    Google Scholar 

  • Magnuson JJ, Webster KE, Assel RA, Bowser CJ, Dillon PJ, Eaton JD, Evans HE, Fee EJ, Hall RI, Mortsch LR, Schindler DW, Quinn FH (1997) Potential effects of climate changes on aquatic ecosystems: Laurentian Great Lakes and Precambrian Shield Region. In: Cushing CE (ed) Freshwater Ecosystems and Climate Change in North America. A Regional Assessment. Wiley, New York, pp. 7–53

    Google Scholar 

  • Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel RA, Barry RG, Card VV Kuusisto E, Granin NG, Prowse TD, Stewart KM, Vuglinski VS (2000) Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289:1743–1746

    Google Scholar 

  • Malanson GP, Cairns DM (1997) Effects of dispersal population delays and forest fragmentation on tree migration rates. Plant Ecol 131:67–79

    Google Scholar 

  • Malinina TI, Filatova IV, Filatov NN (1985) Long-term changes in the elements of water budget of Lake Ladoga. In: Problemy Issledovaniya Krupnyh Ozer. Nauka, Leningrad, pp. 79–81

    Google Scholar 

  • Malmaeus JM, Blenckner T, Markensten H, Persson I (2006) Lake phosphorus dynamics and climate warming: A mechanistic model approach. Ecol Model 190:1–14

    Google Scholar 

  • Malmer N, Johansson T, Olsrud M, Christensen TR (2005) Vegetation climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Glob Change Biol 11:1895–1909

    Google Scholar 

  • Mander Ü, Palang H (1999) Landscape changes in Estonia: Causes, processes and consequences. In: Krönert R, Baudry J, Bowler IR, Reenberg A (eds) Land-Use Changes and Their Environmental Impact in Rural Areas in Europe. MAB Series, Vol 24. The Parthenon Publishing Group Paris, pp. 165–187

    Google Scholar 

  • Mander U, Kuusemets V, Lõhmus K, Mauring T (1997) Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecol Eng 8:299–324

    Google Scholar 

  • Mander Ü, Kull A, Tamm V, Kuusemets V, Karjus R (1998) Impact of climatic fluctuations and land use change on runoff and nutrient losses in rural landscapes. Landsc Urban Plann 41:229–238

    Google Scholar 

  • Mander Ü, Kull A, Kuusemets V (2000a) Nutrient flows and land use change in a rural catchment: A modelling approach. Landsc Ecol 15:187–199

    Google Scholar 

  • Mander Ü, Kull A, Kuusemets V, Tamm T (2000b) Nutrient runoff dynamics in a rural watershed: Influence of land use changes climatic fluctuations and ecotechnological measures. Ecol Eng 14: 405–417

    Google Scholar 

  • Masanova MD, Filatova IV (1985) Probability structure of interannual water level changes in northwestern lakes. In: Problemy Issledovaniya Krupnyh Ozer Nauka Leningrad, pp. 81–84 (in Russian)

    Google Scholar 

  • Mattson WJ, Kuokkanen K, Niemelä P, Julkunen-Tiitto R, Kellomäki S, Tahvanainen J (2004) Elevated CO2 alters birch resistance to Lagomorpha herbivores. Glob Change Biol 10:1402–1413

    Google Scholar 

  • May RM (1986) When two and two do not make four: Nonlinear phenomena in ecology. Proceedings of the Royal Society of London B 228:241–266

    Google Scholar 

  • McCann K, Hastings A, Huxel G (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798

    Google Scholar 

  • McGuire AD, Chapin FS III, Wirth C, Apps M, Bhatti J, Callaghan T, Christensen TR, Clein JS, Fukuda M, Maximov T, Onuchin A, Shvidenko A, Vaganov E (2007) Responses of high latitude ecosystems to global change: Potential consequences for the climate system. In: Canadell JG, Pataki D, Pitelka LF (eds) Terrestrial Ecosystems in a Changing World. The IGBP Series. Springer, Berlin Heidelberg New York, pp. 297–310

    Google Scholar 

  • McGuire AD, Melillo JM, Joyce LA (1995) The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Ann Rev Ecol Systemat 26:473–503

    Google Scholar 

  • McLaughlin SB, Shriner DS (1980) Allocation of resources to defence and repair Plant Disease V: 407–431

    Google Scholar 

  • Menzel A (2002) Final Report (Feb 2000-June 2002) of the EU project POSITIVE (EVK2-CT-1999-00012). Technische Universiät München, Munich.

    Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Google Scholar 

  • Metzger MJ, Rounsevell MDA, Acosta-Michlik L, Leemans R, Schröter D (2006) The vulnerability of ecosystem services to land use change. Agr Ecosyst Environ 114:64–85

    Google Scholar 

  • Michel FA, Vaneverdingen RO (1994) Changes in hydrogeologic regimes in permafrost regions due to climatic-change. Permafrost and Periglacial Processes 5:191–195

    Google Scholar 

  • Moen J, Danell Ö (2003) Reindeer in the Swedish mountains: An assessment of grazing impacts. Ambio 32: 397–402

    Google Scholar 

  • Moen J, Aune K, Edenius L, Angerbjörn A (2004) Potential effects of climate change on treeline position in the Swedish mountains. Ecol Soc 9,1:16

    Google Scholar 

  • Molau U (1996) Climatic impacts on flowering growth and vigour in an arctic-alpine cushion plant Diapensia lapponica under different snow cover regimes. Ecol Bull 45:210–219

    Google Scholar 

  • Molau U (1997) Phenology and reproductive success in arctic plants: Susceptibility to climate change. In: Oechel WC, Callaghan T, Gilmanov T, Holtén JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global Change and Arctic Terrestrial Ecosystems. Springer, Berlin Heidelberg New York, pp. 153–170

    Google Scholar 

  • Molau U (2001) Tundra plant responses to experimental and natural temperature changes. Memoirs of National Institute of Polar Research, Tokyo, Special Issue 54:445–466

    Google Scholar 

  • Molau U, Nordenhäll U, Eriksen B (2005) Onset of flowering and climate variability in an alpine landscape: A 10-year study from Swedish Lapland. Am J Bot 92:422–431

    Google Scholar 

  • Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007) Changes in European ecosystem productivity and carbon balance driven by Regional Climate Model output. Glob Change Biol 13:108–122

    Google Scholar 

  • Moss B, McKee D, Atkinson D, Collings SE, Eaton JW, Gill AB, Harwey I, Hatton K, Heyes T, Wilson T (2003) How important is climate? Effects of warming nutrient addition and fish on phytoplankton in shallow lake microcosms. J Appl Ecol 40:782–792

    Google Scholar 

  • Müller A, Wessels W (1999) The flood in the Odra River 1997 — Impact of suspended solids on water quality. Acta Hydrochimica and Hydrobiologica 27:316–320

    Google Scholar 

  • Müller-Navarra DC, Güss S, von Storch H (1997) Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Glob Change Biol 3:429–438

    Google Scholar 

  • Müller-Wohlfeil DI, Jorgensen JO, Kronvang B, Wiggers L (2002) Linked catchment and scenario analysis of nitrogen leaching and loading: A case study from a Danish catchment-fjord system, Manager Fjord. Phys Chem Earth 27:691–699

    Google Scholar 

  • Mund M, Kummetz E, Hein M, Bauer GA, Schulze ED (2002) Growth and carbon stocks of a spruce forest chronosequence in central Europe. Forest Ecol Manag 171:275–296

    Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proceedings of the National Academy of Sciences, USA 98:14784–14789

    Google Scholar 

  • Mysterud A, Stenseth NC, Yoccuz NG, Langvatn R, Steinheim G (2001) Nonlinear effects of largescale climatic variability on wild and domestic herbivores. Nature 410:1096–1099

    Google Scholar 

  • Nabuurs GJ, Pussinen A, Karjalainen T, Erhard M, Kramer K (2002) Stemwood volume increment changes in European forests due to climate change — a simulation study with the EFISCEN model. Glob Change Biol 8:304–316

    Google Scholar 

  • Najbar B, Szuszkiewicz E (2005) Reproductive ecology of the European pond turtle Emys orbicularis (Linnaeus 1758) (Testudines: Emydidae) in western Poland. Acta Zoologica Cracoviensa 48A: 11–19

    Google Scholar 

  • Nakicenovic N, Swart R (2000) Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nellemann C, Kullerud L, Vistnes J, Forges BC, Kofinas GP, Kaltenborn BP, Gron O, Henry D, Magomedova M, Lambrechts C, Bobiwash R, Schei PJ, Larsen TS (2001) GLOBIO — Global Methodology for Mapping Human Impacts on the Biosphere. United Nations Environment Programme

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Google Scholar 

  • Neuvonen S, Ruohomäki K, Bylund H, Kaitaniemi P (2001) Insect herbivores and herbivory effects on mountain birch dynamics. In: Wielgolaski FE (ed) Nordic Mountain Birch Ecosystems. Man and Biosphere Series. The Parthenon Publishing Group, New York, pp. 207–222

    Google Scholar 

  • Nielsen CN (2001) Vejledning i styrkelse af stormfasthed og sundhed i na letraebevoksninger (Guide to the assessment of storm resilience and health in broadleaved forest stands). Dansk Skovbrugs Tidsskrift 86:216–263 (in Danish)

    Google Scholar 

  • Niemirycz E (1999) The pollution load from the River Odra in comparison to that in other Polish rivers in 1988–1997. Acta Hydrochimica and Hydrobiologica 27:286–291

    Google Scholar 

  • Nihlgård B (1997) Forest decline and environmental stress In: Brune D, Chapman DV, Gwynne MD, Pacyna JM (eds) The Global Environment; Science Technology and Management. Scandinavia Science, Oslo, pp. 422–440

    Google Scholar 

  • Nilsson C, Stjernquist I, Bärring L, Schlyter P, Jönsson AM, Samuelsson H (2004) Recorded storm damage in Swedish forests 1901–2000. Forest Ecol Manag 199:165–173

    Google Scholar 

  • Nõges P, Järvet A (2005) Climate driven changes in the spawning of roach (Rutilus rutilus L) and bream (Abramis brama L) in the Estonian part of the Narva River basin. Boreal Env Res 10:45–55

    Google Scholar 

  • Nõges P, Kägu M, Nõges T (2007) Role of climate and agricultural practice in determining the matter discharge into large shallow Lake Võrtsjärv, Estonia. Hydrobiologia 581:125–134

    Google Scholar 

  • Nõges T (2004) Reflection of the changes of the North Atlantic Oscillation Index and the Gulf Stream Position Index in the hydrology and phytoplankton of Võrtsjärv, a large, shallow lake in Estonia. Boreal Env Res 9: 401–408

    Google Scholar 

  • Nõges T, Nõges P (1999) The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408/409:277–283

    Google Scholar 

  • Nõges T, Nõges P (2004) Large shallow temperate lakes Peipsi and Võrtsjärv: Consequences of eutrophication and climate change. In: Wassmann P, Olli K (eds) Drainage Basin Nutrient Inputs and Eutrophication: An Integrated Approach. University of TromsØ, Norway, pp. 290–301

    Google Scholar 

  • Nõges T, Nõges P, Laugaste R (2003) Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506:257–263

    Google Scholar 

  • Nõges T, Järvet A, Laugaste R, Loigu E, Leisk Ü, Tönno I, Nõges P (2005) Consequences of catchment processes and climate changes on the ecological status of large shallow temperate lakes. In: Ramachandra TV, Ahalya N, Rajasekara Murthy C (eds) Aquatic Ecosystems. Conservation Restoration and Management. Capital Publishing Company, New Delhi, pp. 88–99

    Google Scholar 

  • Nyberg P, Bergstrand E, Degerman E, Enderlein O (2001) Recruitment of pelagic fish in an unstable climate: Studies in Sweden’ s four largest lakes. Ambio 30:559–564

    Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Ault RP, Bryant P (1998) The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems. Glob Change Biol 4:77–90

    Google Scholar 

  • Ojala A, Kankaala P, Tulonen T (2002) Growth response of Equisetum fluviatile to elevated CO2 and temperature. Env Exp Bot 47:157–171

    Google Scholar 

  • Olofsson J, Hulme PE, Oksanen L, Suominen O (2004) Importance of large and small mammalian herbivores for the plant community structure in the forest tundra ecotone. Oikos 106:324–334

    Google Scholar 

  • Olsrud M, Melillo JM, Christensen TR, Michelsen A, Wallander H, Olsson PA (2004) Response of ericoid mycorrhizal colonization and functioning to global change factors. New Phytologist 162: 459–470

    Google Scholar 

  • Oltchev A, Cermak J, Gurtz J, Tishenko A, Kiely G, Nadezhdina N, Zappa M, Lebedeva N, Vitvar T, Albertson JD, Tatarinov F, Tishenko D, Nadezhdin V, Kozlov B, Ibrom A, Vygodskaya N, Gravenhorst G(2002) The response of the water fluxes of the boreal forest region at the Volga’s source area to climatic and land-use changes. Phys Chem Earth 27:675–690

    Google Scholar 

  • Ott J (2001) Expansion of Mediterranean Odonata in Germany and Europe — consequences of climatic changes. In: Walther GR, Burga CA, Edwards PJ (eds) Fingerprints of Climate Change — Adapted Behaviour and Shifting Species Ranges. Kluwer Academic/Plenum Publications, New York, pp. 89–111

    Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488

    Google Scholar 

  • Palecki MA, Barry RG (1986) Freeze-up and break-up of lakes as an index of temperature changes during the transition season: A case study for Finland. J Appl Meteorol 25:893–902

    Google Scholar 

  • Palmqvist G (1999) Intressanta fynd av storfjärilar (Macrolepidoptera) i Sverige 1998 (Interesting observations of large butterflies and moths in Sweden). Entomologisk Tidskrift 120:59–74 (in Swedish)

    Google Scholar 

  • Paludan C, Alexeyev FE, Drews H, Fleischer S, Fuglsang A, Kindt T, Kowalski P, Moos M, Radlowski A, Stromfors G, Westberg V, Wolter K (2002) Wetland management to reduce Baltic Sea eutrophication. Water Sci Tech 45:87–94

    Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descamon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in ranges of butterfly species associated with regional warming. Nature 399:579–583

    Google Scholar 

  • Parry M (2000) Assessment of Potential Effects and Adaptation for Climate Change in Europe. The Europe Acacia Project. Report of a Concerted Action of the Environment Programme of the Research Directorate General of the Commission of the European Communities. Jackson Environment Institute, University of East Anglia, UK

    Google Scholar 

  • Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, Lee JA (1994) Growth responses of four sub-Arctic dwarf shrubs to simulated environmental change. J Ecol 82:307–318

    Google Scholar 

  • Pastor J, Solin J, Bridgham SD, Updegraff K, Harth C, Weishampel P, Dewey B (2003) Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos 100:380–386

    Google Scholar 

  • Paulsen HM, Volkgenannt U, Schnug E (2002) Contribution of organic farming to marine environment protection. Landbauforschung Völkenrode 52:211–218

    Google Scholar 

  • Peltola H, Kellomäki S, Väisänen H (1999) Model computations of the impact of climatic change on the windthrow risk of trees. Climatic Change 41:17–36

    Google Scholar 

  • Pernaraviciüte B (2003) Peculiarities of the thermal regime of Lithuanian lakes. In: Lake Ecosystems, Biological Processes, Anthropogenic Transformation, Water Quality. Materials of the II International Scientific Conference, September 22–26, 2003. Minsk, Belarus

    Google Scholar 

  • Persaud AD, Williamson CE (2005) Ultraviolet and temperature effects on planktonic rotifers and crustaceans in northern temperate lakes. Freshwat Biol 50:467–476

    Google Scholar 

  • Persson B, Beuker E (1997) Distinguishing between the effects of changes in temperature and light climate using provenance trials with Pinus sylvestris in Sweden. Can J Forest Res 27:572–579

    Google Scholar 

  • Persson I, Blenckner T, Dokulil M, Hewitt D, Jones I, Leppäranta M (2005) Modeled thermal response of three European lakes to a probable future climate. Verh Proc Trav SIL 29:667–671

    Google Scholar 

  • Petchey OL, McPhearson PT, Casey M, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

    Google Scholar 

  • Pettersson K (1986) The fractional composition of phosphorus in lake sediments of different characteristics. In: Sly PG (ed) Sediments and Water Interactions. Springer, Berlin Heidelberg New York, pp. 149–155

    Google Scholar 

  • Pettersson K, Grust K, Weyhenmeyer GB, Blenckner T (2004) Seasonality of chlorophyll and nutrients in Lake Erken — effects of weather conditions. Hydrobiologia 506–509:75–81

    Google Scholar 

  • Phoenix GK, Gwynn-Jones D, Callaghan TV, Sleep D, Lee JA (2001) Effects of global change on a sub-Arctic heath: Effects of enhanced UV-B radiation and increased summer precipitation. J Ecol 89:256–267

    Google Scholar 

  • Pihu E, Kangur A (2000) Main changes in the ichthyocenosis of Lake Peipus since the 1950s. Proceedings of the Estonian Academy of Sciences. Biology, Ecology 49:81–90

    Google Scholar 

  • Pisarenko AI, Strakhov V, Päivinen R, Kuusela K, Dyakun FA, Sdobnova VV (2001) Development of Forest Resources in the European Part of the Russian Federation. European Forest Institute Research Report 11. Brill Academic Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Potter JA, Press MC, Callaghan TV, Lee JA (1995) Growth responses of Polytrichum commune and Hylocomium splendens to simulated environmental change. New Phytologist 131:533–541

    Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Google Scholar 

  • Pöyry J, Toivonen H (2005) Climate change adaptation and biological diversity. FINADAPT Working Paper 3. Finnish Environmental Institute Mimeographs 333, Helsinki

    Google Scholar 

  • Press MC, Potter JA, Burke MJW, Callaghan TV, Lee JA (1998) Response of a subarctic dwarf shrub heath community to simulated environmental change. J Ecol 86:315–327

    Google Scholar 

  • Pussinen A, Meyer J, Zudin S, Lindner M (2005) European mitigation potential. In: Management of European forests under changing climatic conditions. In: Kellomäki S, Leinonen S (eds) Management of European Forests Under Changing Climatic Conditions. University of Joensuu, Faculty of Forestry. Res Notes 163

    Google Scholar 

  • Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in antarctic lakes. Science 295:645

    Google Scholar 

  • Rae R, Vincent WF (1998) Effects of temperature and ultraviolet radiation on microbial foodweb structure: Potential responses to global change. Freshwat Biol 40:747–758

    Google Scholar 

  • Räike A, Pietiläinen OP, Rekolainen S, Kauppila P, Pitkänen H, Niemi J, Raateland A, Vuorenmaa J (2003) Trends of phosphorus nitrogen and chlorophyll? concentrations in Finnish rivers and lakes in 1975–2000. Sci Total Env 310:47–59

    Google Scholar 

  • Räisänen J, Rummukainen M, Ullerstig A (2001) Downscaling of greenhouse gas induced climate change in two GCMs with the Rossby Centre regional climate model for northern Europe. Tellus 53A:168–191

    Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier M, Samuelsson P, Willen U (2003) GCM Driven Simulations of Recent and Future Climate With the Rossby Centre Coupled Atmosphere-Baltic Sea Regional Climate Model RCAO. Reports Meteorology and Climatology (RMK) No 101. Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

    Google Scholar 

  • Raymond PA, Cole JJ (2003) Increase in the export of alkalinity from North America’s largest river. Science 301:88–91

    Google Scholar 

  • Reid WV, Mooney HA, Cropper A, Capistrano D, Carpenter SR, Chopra K, Dagupta P, Dietz T, Duraiappah AK, Hassan R, Kasperson R, Leemans R, May RM, McMichael AJ, Pingali P, Samper C, Scholes R, Watson RT, Zakri AH, Shidong Z, Ash NJ, Bennett E, Kumar P, Lee MJ, Raudsepp-Hearne C, Simons H, Thonell J, Zurek MB (2005) Ecosystems and Human Well-being: Synthesis Island Press, Washington DC

    Google Scholar 

  • Rekolainen S, Grönroos J, Bärlund I, Nikander A, Laine Y (1999) Modelling the impacts of management practices on agricultural phosphorus losses to surface waters of Finland. Water Sci Tech 39: 265–272

    Google Scholar 

  • Rheinheimer G (1998) Pollution in the Baltic Sea. Naturwissenschaften 85:318–329

    Google Scholar 

  • Rivza B (1997) Economic social and environmental conditions in Latvian rural areas. Ambio 26:439–441

    Google Scholar 

  • Robertson DM, Ragotzkie RA, Magnuson JJ (1992) Lake ice records used to detect historical and future climate changes. Climatic Change 21:407–427

    Google Scholar 

  • Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press MC (1998) Plant community responses to simulated environmental change at a high Arctic polar semidesert. Ecology 79:856–866

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Google Scholar 

  • Rounsevell MDA, Ewert F, Reginster I, Leemans R, Carter T (2005) Future scenarios of European agricultural land use. II. Projecting changes in cropland and grassland. Agr Ecosyst Env 107:117–135

    Google Scholar 

  • Rounsevell MDA, Berry PM, Harrison PA (2006a) Future environmental change impacts on rural land use and biodiversity: A synthesis of the ACCELERATES project. Env Sci Pol 9:93–100

    Google Scholar 

  • Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpää S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck G (2006b) A coherent set of future land use change scenarios for Europe. Agr Ecosyst Environ 114:57–68

    Google Scholar 

  • Rummukainen M, Räisänen J, Bringfelt B, Ullerstig A, Omstedt A, Willén U, Hansson U, Jones C (2001) A regional climate model for northern Europe: Model description and results from the downscaling of two GCM control simulations. Clim Dyn 17:339–359

    Google Scholar 

  • Rybak J (2002) Seasonal and long-term export rates of nutrients with surface runoff in the river Jorka catchment basin (Masurian Lakeland Poland). Polish J Ecol 50:439–458

    Google Scholar 

  • Saarnio S, Järviö S, Saarinen T, Vasander H, Silvola J (2003) Minor changes in vegetation and carbon gas balance in a boreal mire under a raised CO2 or NH4/NO3 supply. Ecosystems 6:46–60

    Google Scholar 

  • Sachanowicz K, Ciechanowski M (2006) First winter record of migratory bat Pipistrellus nathusii (Keyserling and Blasius 1839) (Chiroptera: Vespertilionidae) in Poland: Yet more evidence of global warming? Mammalia 70:168–169

    Google Scholar 

  • Saether BE, Lande R, Engen S, Weimerskirch H, Lillegaard M, Altwegg R, Becker PH, Bregnballe T, Brommer JE, McCleery R, Merila J, Nyholm E, Rendell W, Robertson RR, Tryjanowski P, Visser ME (2005) Generation time and temporal scaling of bird population dynamics. Nature 436:99–102

    Google Scholar 

  • Sagrario MG, Jeppesen E, Gomà J, Søndergaard M, Jensen JP, Lauridsen T, Landkildehust F (2005) Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwat Biol 50:27–41

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost Survival of Plants Ecological Studies 62. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DH, Mooney HA, Oesterheld M, Leroy Poff N, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Google Scholar 

  • Salonen K, Arvola L, Rask M (1984) Autumnal and vernal circulation of small forest lakes in Southern Finland. Verh Proc Trav SIL 22:103–107

    Google Scholar 

  • Sarvala J, Helminen H, Auvinen H (1999) Portrait of a flourishing freshwater fishery: Pyhäjärvi a lake in SW-Finland. Boreal Env Res 3:329–345

    Google Scholar 

  • Saxe H (1993) Triggering and predisposing factors in the “Red” decline syndrome of Norway spruce (Picea abies). Trees 8:39–48

    Google Scholar 

  • Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytologist 149:369–400

    Google Scholar 

  • Scharff N, Langemark S (1997) Argiope bruennichi (Scopoli) in Denmark (Araneae; Araneidae). Entomologiske Meddelelser 65:179–182

    Google Scholar 

  • Scheffer M, Straile D, van Nes EH, Hosper H (2001) Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr 46:1780–1783

    Google Scholar 

  • Scheifinger H, Menzel A, Koch E, Peter C (2003) Trends of spring time frost events and phenological dates in Central Europe. Theor Appl Climatol 74:41–51

    Google Scholar 

  • Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633

    Google Scholar 

  • Scheller RM, Mladenoff DJ (2005) A spatially interactive simulation of climate change harvesting wind and tree species migration and projected changes to forest composition and biomass in northern Wisconsin USA. Glob Change Biol 11:307–321

    Google Scholar 

  • Schindler DW (1996) Widespread effects of climate warming on freshwater ecosystems in North America. Hydrolog Process 11:1044–1069

    Google Scholar 

  • Schindler DW, Beaty KG, Fee EJ, Cruikshank DR, DeBruyn ER, Findlay DL, Linsey GA, Shearer JA, Stainton MP, Turner MA (1990) Effects of climate warming on lakes of the central boreal forest. Science 250:967–970

    Google Scholar 

  • Schnelle F (1955) Pflanzen-Phänologie (Plant Phenology). Akademische Verlagsgesellschaft Geest and Portig KG, Leipzig, Germany (in German)

    Google Scholar 

  • Schoeneweiss DF (1975) Predisposition stress and plant disease. Ann Rev Phytopathol 13:193–211

    Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice C, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Garcia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Google Scholar 

  • Schults GE (1981) Obshtshaja Fenologija (Principles of Phenology). “Nauka” Leningradskoje Otdelenije, Leningrad (in Russian)

    Google Scholar 

  • Schwartz MD (ed) (2003) Phenology: An Integrative Environmental Science Tasks for Vegetation. Science 39 Kluwer Academic Publishers Dordrecht, The Netherlands.

    Google Scholar 

  • Schwartzman DW, Volk T (1989) Biotic enhancement of weathering and the habitability of Earth. Nature 340:457–460

    Google Scholar 

  • Sefrová H, Lasuvka Z (2001) Dispersal of the horse-chesnut leaf miner Cameraria ohridella Deschka and Dimic 1986, in Europe: Its course, ways and causes (Lepidoptera: Gracillaridae) Entomologische Zeitschrift 111: 194–198

    Google Scholar 

  • Sharpe PJH, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64: 649–670

    Google Scholar 

  • Shaver GR, Jonasson S (1999) Response of Arctic ecosystems to climate change: Results of long-term field experiments in Sweden and Alaska. Polar Res 18:245–252

    Google Scholar 

  • Shaver GR, Canadell J, Chapin FS III, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000) Global warming and terrestrial ecosystems: A conceptual framework for analysis. BioScience 50:871–882

    Google Scholar 

  • Shudo E, Iwasa Y (2001) Inducible defence against pathogens and parasites: Optimal choice among multiple options. J Theor Biol 209:233–247

    Google Scholar 

  • Sileika AS, Kutra G, Berankiene L (2002) Phosphate run-off in the Nevezis River (Lithuania). Env Monit Assess 78:153–167

    Google Scholar 

  • Sileika AS, Gaigalis K, Kutra G, Smitiene A (2005) Factors affecting N and P losses from small catchments (Lithuania). Env Monit Assess 102:359–374

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Google Scholar 

  • Slaymaker O (2001) Why so much concern about climate change and so little attention to land use change? Canadian Geographer 45:71–78

    Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637

    Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing arctic lakes. Science 308:1429

    Google Scholar 

  • Smolander A, Barnette L, Kitunen V, Lumme I (2004) N and C transformations in long-term Nfertilized forest soils in response to seasonal drought. Appl Soil Ecol29:225–235

    Google Scholar 

  • Sobek S, Algesten G, Bergström AK, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO2 in boreal lakes. Glob Change Biol 9:630–641

    Google Scholar 

  • Solheim B, Johanson U, Callaghan TV, Lee JA, Gwynn Jones D, Bjorn LO (2002) The nitrogen fixation potential of arctic cryptogam species is influenced by enhanced UV-B radiation. Oecologia 133:90–93

    Google Scholar 

  • Sonesson M, Hoogesteger J (1983) Recent treeline dynamics (Betula pubescens Ehrh ssp tortuosa (ledeb) Nyman) in northern Sweden. Nordicana 47:47–54

    Google Scholar 

  • Sonesson M, Gehrke C, Tjus M (1992) CO2 environment microclimate and photosynthesis characteristics of the moss Hylocomium splendens in a subarctic habitat. Oecologia 92:23–29

    Google Scholar 

  • Sonesson M, Callaghan TV, Björn LO (1995) Short term effects of enhanced UV-B and CO2 on lichens at different latitudes. Lichenologist 27:547–557

    Google Scholar 

  • Sonesson M, Callaghan TV, Carlsson BA (1996) Effects of enhanced ultra-violet radiation and carbon dioxide concentrations on the moss Hylo minium splendens. Glob Change Biol 2:67–73

    Google Scholar 

  • Sonesson M, Carlsson BA, Callaghan TV, Hailing S, Björn LO, Bertgren M, Johansson U (2002) Growth of two peat-forming mosses in subarctic mires: Species interactions and effects of simulated climate change. Oikos 99:151–160

    Google Scholar 

  • Sorvari S, Korhola A, Thompson R (2002) Lake diatom response to recent Arctic warming in Finnish Lapland. Glob Change Biol 8:171–181

    Google Scholar 

  • Sparks TH, Tryjanowski P (2005) The detection of climate impacts: Some methodological considerations. Int J Climatol 25:271–277

    Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (1996) Growth Trends in European Forests — Studies From 12 Countries. EFI-Research Report No 5. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stålnacke P, Grimvall A, Sundblad K, Tonderski A (1999a) Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea 1970–1993. Environ Monit Assess 58:173–200

    Google Scholar 

  • Stålnacke P, Grimvall A, Sundblad K, Wilander A (1999b) Trends in nitrogen transport in Swedish rivers. Environ Monit Assess 598:47–72

    Google Scholar 

  • Stålnacke P, Grimvall A, Libiseller C, Laznik M, Kokorite I (2003) Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture. J Hydrol 283:184–205

    Google Scholar 

  • Stålnacke P, Vandsemb SM, Vassiljev A, Grimwall A, Jolankai G (2004) Changes in nutrient levels in sone Eastern European rivers in response to large-scale changes in agriculture. Water Sci Tech 49: 29–36

    Google Scholar 

  • Stefanescu C, Herrando S, Páramo F (2004) Butterfly species richness in the north-west Mediterranean basin: The role of natural and human-induced factors. J Biogeogr 31:905–915

    Google Scholar 

  • Stendera S, Johnson RK (2005) Does climate change confound lake recovery? Eos Transactions. AGU, 86, Joint Assembly Supplement, Abstract NB32D-04

    Google Scholar 

  • Stenström M, Gugerli F, Henry GHR (1997) Response of Saxifraga oppositifolia L to simulated climate change at three contrasting latitudes. Glob Change Biol 3,Suppl 1:44–54

    Google Scholar 

  • Sterligova OP, Pavlovskiy SA, Komulainen SF (1988) Reproduction of coregonids in the eutrophicated Lake Sjamozero, Karelian ASSR. Finnish Fisheries Research 9:485–488

    Google Scholar 

  • Stöckli R, Vidale PL (2004) European plant phenology and climate as seen in a 20-year AVHRR landsurface parameter dataset. Int J Rem Sens 25:3303–3330

    Google Scholar 

  • Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50

    Google Scholar 

  • Straile D (2002) North Atlantic Oscillation synchronizes food-web interactions in central European lakes. Proceedings of the Royal Society of London B 269:391–395

    Google Scholar 

  • Straile D, Adrian R (2000) The North Atlantic Oscillation and plankton dynamics in two European lakes — two variations on a general theme. Glob Change Biol 6:663–670

    Google Scholar 

  • Strand JF (2000) Some agrometeorological aspects of pest and disease management for the 21st century. Agr Forest Meteorol 103:73–82

    Google Scholar 

  • Strathdee AT, Bales JS, Strathdee FC, Block WC, Coulson SJ, Webb NR, Hodkinson ID (1995) Climatic severity and the response to temperature elevation of arctic aphids. Glob Change Biol 1:23–28

    Google Scholar 

  • Summers RW, Underhill LG (1987) Factors relating to breeding populations of Brent Geese Branta b bernicla and waders (Charadrii) on the Taimyr Peninsula. Bird Study 34:161–171

    Google Scholar 

  • Sundell B (1997) The future of agriculture in the Baltic Sea region: Sustainable agriculture and new technological development. Ambio 26:412–414

    Google Scholar 

  • Sutinen ML, Arora R, Wisniewski M, Ashworth E, Strimbeck R, Palta J (2001) Mechanisms of frost survival and freeze-damage in nature. In: Bigras FJ, Colombo SJ (eds) Conifer Cold Hardiness. Kluwer, Dordrecht, pp. 89–120

    Google Scholar 

  • Svazas S, Meissner W, Serebryakov V, Kozulin A, Grishanov G (2001) Changes of wintering sites of waterfowl in Central and Eastern Europe. OMPO and Institute of Ecology, Vilnius, Lithuania

    Google Scholar 

  • Sykes MT, Prentice IC (1995) Boreal forest futures: Modelling the controls on tree species range limits and transient responses to climate change. Water Air Soil Pollut 82:415–428

    Google Scholar 

  • Sykes MT, Prentice IC, Cramer W (1996) A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr 23:203–233

    Google Scholar 

  • Syroechovski EE, Kuprianov AG (1995) Wild reindeer of the arctic Eurasia: Geographical distribution numbers and population structure. In: Grønlund E, Melander O (eds) Swedish-Russian Tundra Ecology — Expedition 94: A Cruise Report. Swedish Polar Res Secretariat, Stockholm

    Google Scholar 

  • Tenow O (1996) Hazards to a mountain birch forest — Abisko in perspective. Ecol Bull 45:104–114

    Google Scholar 

  • Tesche M (1992) Immediate and long-term (memory) responses of Picea abies to a single growing season of SO2-exposure or moderate drought. Forest Ecol Manag 51:179–186

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MG, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Google Scholar 

  • Thomas G, Rowntree PR (1992) The boreal forest and climate. Q J Roy Met Soc 118:469–497

    Google Scholar 

  • Thuiller W (2003) BIOMOD: Optimising predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 10:2020–2027

    Google Scholar 

  • Tomialojc L, Stawarczyk T (2003) Awifauna Polski Rozmieszczenie, Liczebność i Zmiany (Avifauna in Poland. Distribution, population and variability). Pro Natura, Wroclaw, Poland (in Polish)

    Google Scholar 

  • Tømmervik H, Johansen B, Tombre I, Thannheiser D, Hogda KA, Gaare E, Wielgolaski FE (2004) Vegetation changes in the Nordic mountain birch forest: The influence of grazing and climate change. Arctic Antarct Alpine Res 36:323–332

    Google Scholar 

  • Tranvik LJ, Jansson M (2002) Climate change — terrestrial export of organic carbon. Nature 415:861–862

    Google Scholar 

  • Tryjanowski P, Winiecki A (2003) Ptaki jako wskaznik stepowienia Wielkopolski. In: Banaszak J (ed) Stepowienie Wielkopolski — Pók1 Wieku Później. Wyd Akademii Bydgoskiej, Bydgoszcz, Poland, pp. 175–184 (in Polish)

    Google Scholar 

  • Tryjanowski P, Sparks T, Profus P (2005) Uphill shifts in the distribution of the white stork Ciconia ciconia in southern Poland: The importance of nest quality. Diversity and Distributions 11:219–223

    Google Scholar 

  • Tsirkunov VV, Nikanorov AM, Laznik MM, Dongwei Z (1992) Analysis of long-term and seasonal river water-quality changes in Latvia. Water Res 26:1203–1216

    Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190

    Google Scholar 

  • Tumas R (2000) Evaluation and prediction of nonpoint pollution in Lithuania. Ecol Engl 4:443–451

    Google Scholar 

  • Turner K, Georgiou S, Gren IM, Wulff F, Barrett S, Söderqvist T, Bateman IJ, Folke C, Langaas S, Zylicz Z, Mäler KG, Markowska A (1999) Managing nutrient fluxes and pollution in the Baltic: An interdisciplinary simulation study. Ecological Economics 30:333–352

    Google Scholar 

  • UN-ECE/FAO (2000) Contribution to the Global Forest Resource Assessment — Forest Resources in Europe, CIS, North America, Australia, Japan and New Zealand. United Nations Publications, Geneva, Timber and Forest Study Papers No 17:1–445

    Google Scholar 

  • UNFCCC (1995) Estonia’s First National Communication Under the UN Framework Convention on Climate Change. UNFCCC, Bonn, Germany, http://unfccc.int

    Google Scholar 

  • UNFCCC (2002) The First National Communication of the Republic of Lithuania on Climate Change. UNFCCC, Bonn, Germany, http://unfccc.int

    Google Scholar 

  • UNFCCC (2003a) Estonia’s Third National Communication Under the UN Framework Convention on Climate Change. UNFCCC, Bonn, Germany, http://unfccc.int

    Google Scholar 

  • UNFCCC (2003b) Lithuania’s Second National Communication Under the Framework Convention on Climate Change. UNFCCC, Bonn, Germany, http://unfccc.int

    Google Scholar 

  • Usher MB, Callaghan TV, Gilchrist G, Heal B, Juday JP, Loeng H, Muir MAK, Prestrud P (2005) Principles of conserving the Arctic’s biodiversity. In: ACIA. 2005. Arctic Climate Impact Assessment. Cambridge University Press, New York, pp. 539–596

    Google Scholar 

  • Uuemaa E, Roosaare J, Mander Ü (2007) Landscape metrics as indicators of river water quality at catchment scale. Nordic Hydrology 38:125–138

    Google Scholar 

  • Vagstad N, Jansons V, Loigu E, Deelstra J (2000) Nutrient losses from agricultural areas in the Gulf of Riga drainage basin. Ecol Eng 14:435–441

    Google Scholar 

  • Vagstad N, Stålnacke P, Andersen HE, Deelstra J, Jansons V, Kyllmar K, Loigu E, Rekolainen S, Tumas R (2004) Regional variations in diffuse nitrogen losses from agriculture in the Nordic and Baltic regions. Hydrol Earth Syst Sci 8:651–662

    Google Scholar 

  • Valpasvuo-Jaatinen P, Rekolainen S, Latostenmaa H (1997) Finnish agriculture and its sustainability: Environmental impacts. Ambio 26:448–455

    Google Scholar 

  • van Donk E, Santamaria L, Mooij WM (2003) Climate warming causes regime shifts in lake food webs: A reassessment. Limnol Oceanogr 48:1350–1353

    Google Scholar 

  • van Meijl H, van Rheenen T, Tabeau AB, Eickhout B (2005) The impact of different policy environments on land use in Europe. Agr Ecosyst Environ 114:21–38

    Google Scholar 

  • van Vliet AJH (2003) Toward a multifunctional European phenology network. In: Schwartz MD (ed) Phenology: An Integrative Environmental Science Tasks for vegetation science. Kluwer, Dordrecht, pp. 105–117

    Google Scholar 

  • van Vliet AJH, de Groot RS, Bellens Y, Braun P, Bruegger R, Bruns E, Clevers J, Estreguil C, Flechsig M, Jeanneret F, Maggi M, Martens P, Menne B, Menzel A, Sparks T (2003) The European Phenological Network. Int J Biometeorol 47:202–212

    Google Scholar 

  • van Wijk MT, Clemmensen KE, Shaver GR, Williams M, Callaghan TV, Chapin FS III, Cornelissen JHC, Gough L, Hobbie SE, Jonasson S, Lee JA, Michelsen A, Press MC, Richardson SJ, Rueth H (2003) Long term ecosystem level experiments at Toolik Lake, Alaska and at Abisko, Northern Sweden: Generalisations and differences in ecosystem and plant type responses to global change. Glob Change Biol 10:105–123

    Google Scholar 

  • Varis O, Kuikka S (1997) BENE-EIA: A Bayesian approach to expert judgment elicitation with case studies on climate change impacts on surface waters. Climatic Change 37:539–563

    Google Scholar 

  • Vassiljev J (1998) The simulated response of lakes to changes in annual and seasonal precipitation: Implication for Holocene lake-level changes in northern Europe. Clim Dyn 14:791–801

    Google Scholar 

  • Vavrus SJ, Wymne RH, Foley JA (1996) Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol Oceanogr 41:822–831

    Google Scholar 

  • Venäläinen A, Tuomenvirta H, Heikinheimo M, Kellomäki S, Peltola H, Strandman H, Väisänen H (2001) Impact of climate change on soil frost under snow cover in a forested landscape. Climate Res 17:63–72

    Google Scholar 

  • Verburg PH, Schulp CJE, Witte N, Veldkamp A (2006) Downscaling of land use changes to assess the dynamics of European landscapes. Agr Ecosyst Environ 114:39–56

    Google Scholar 

  • Virtanen T, Neuvonen S (1999) Climate change and macrolepidopteran biodiversity in Finland. Chemosphere Glob Change Sci 4:439–448

    Google Scholar 

  • Vlassova TK (2002) Human impacts on the tundra-taiga zone dynamics: The case of the Russian lesotundra. Ambio Special Report 12:30–36

    Google Scholar 

  • Volney WJA, Fleming RA (2000) Climate change and impacts of boreal forest insects. Agr Ecosyst Env 82:283–294

    Google Scholar 

  • Vought LBM, Dahl J, Pedersen CL, Lacoursiere JO (1994) Nutrient retention in riparian ecotones. Ambio 23:342–348

    Google Scholar 

  • Walankiewicz W (2002) The Number and Composition of Snags in the Pine-Spruce Stands of the Bialowieza National Park, Poland. USDA Forest Service General Technical Report PSW-GTR-181:489–500

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TCJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Google Scholar 

  • Walther GR, Berger S, Sykes MT (2005) An ecological “footprint” of climate change. Proceedings of the Royal Society of London B 272:1427–1432

    Google Scholar 

  • Wang SQ, Liu JY, Yu GR, Pan YY, Chen QM, Li KR, Li JY (2004) Effects of land use change on the storage of soil organic carbon: A case study of the Qianyanzhou Forest Experimental Station in China. Climatic Change 67:247–255

    Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Google Scholar 

  • Weckström J, Korhola A (2001) Patterns in the distribution composition and diversity of diatom assemblages in relation to ecoclimatic factors in Arctic Lapland. J Biogeogr 28:31–45

    Google Scholar 

  • Weld JL, Sharpley AN, Beegle DB, Gburek VJ (2001) Identifying critical source areas of phosphorus export from agricultural watersheds. Nutrient Cycling in Agroecosystems 59:29–38

    Google Scholar 

  • Welker JM, Molau U, Parsons AN, Robinson CH, Wookey PA (1997) Responses of Dryas octopetala to ITEX environmental manipulations: A synthesis with circumpolar comparisons. Glob Change Biol 3,Suppl 1:61–73

    Google Scholar 

  • Weiler CM, Watzin MC, Wang D (1996) Role of wetlands in reducing phosphorus loading to surface water in eight watersheds in the Lake Champain basin. Env Manag 20:731–739

    Google Scholar 

  • Wendland F, Kunkel R, Grimvall A, Kronvang B, Müller-Wohlfeil DI (2002) The SOIL-N/WEKU model system — a GIS-supported tool for the assessment and management of diffuse nitrogen leaching at the scale of river basins. Water Sci Tech 45:285–292

    Google Scholar 

  • Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus — a review of recent research. Forest Ecol Manag 202:67–82

    Google Scholar 

  • Weyhenmeyer GA (2001) Warmer winters: Are planctonic algal populations in Sweden’s largest lakes affected? Ambio 30:565–571

    Google Scholar 

  • Weyhenmeyer GA (2004) Synchrony in relationships between the North Atlantic Oscillation and water chemistry among Sweden’s largest lakes. Limnol Oceanogr 49:1191–1201

    Google Scholar 

  • Weyhenmeyer GA, Blenckner T, Pettersson K (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol Oceanogr 44:1788–1792

    Google Scholar 

  • White MA, Nemani RR, Thornton PE, Running SW (2002) Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems 5:260–277

    Google Scholar 

  • Williams SE, Bolintho EE, Fox S (2003) Climate change in Australian tropical rainforests: An impending environmental catastrophe. Proceedings of the Royal Society of London Series B 270:1887–1892

    Google Scholar 

  • Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Glob Change Biol 10:1844–1856

    Google Scholar 

  • Wolf A, Blyth E, Harding R, Jacob D, Keup E, Goettel H, Callaghan T (2007a) Sensitivity of an ecosystem model to hydrology and temperature. Climatic Change DOI: 10.1007/sl0584-007-9339-z

    Google Scholar 

  • Wolf A, Callaghan TV, Larson K (2007b) Future changes in vegetation and ecosystem function of the Barents Region. Climatic Change (in press)

    Google Scholar 

  • Wolf A, Kozlov MV, Callaghan TV (2007c) Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Climatic Change DOI: 10.1007/sl0584-007-9340-6

    Google Scholar 

  • Woodward FI (1987) Climate and Plant Distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • World Resources Institute (2000) World Resources 2000–2001. People and Ecosystems: The Fraying Web of Life. World Resources Institute, Washington DC

    Google Scholar 

  • Yang DQ, Kane DL, Hinzman LD, Zhang XB, Zhang TJ, Ye HC (2002) Siberian Lena River hydrologic regime and recent change. J Geophys Res — Atmospheres 107D23, 4694, doi:10.1029/ 2002JD002542

    Google Scholar 

  • Yoccoz NG, Ims RA (1999) Demography of small mammals in cold regions: The importance of environmental variability. Ecological Bulletins 47: 137–144

    Google Scholar 

  • Yoo J, D’Odorico P (2002) Trends and fluctuations in the dates of ice break-up of lakes and rivers in Northern Europe: The effect of the North Atlantic Oscillation. J Hydrol 268:100–112

    Google Scholar 

  • Yurkovskis A (2004) Long-term land-based and internal forcing of the nutrient state of the Gulf of Riga (Baltic Sea). J Mar Syst 50:181–197

    Google Scholar 

  • Zaehle S, Bondeau A, Carter TR, Cramer W, Erhard M, Prentice IC, Reginster I, Rounsevell MDA, Sitch S, Smith B, Smith PC, Sykes M (2007) Projected changes in terrestrial carbon storage in Europe under climate and land use change 1990–2100. Ecosystems 10:380–401

    Google Scholar 

  • Zebisch M, Wechsung F, Kenneweg H (2004) Landscape response functions for biodiversity — assessing the impact of land-use changes at the county level. Landsc Urban Plann 67:157–172

    Google Scholar 

  • Zhuang Q, McGuire AD, Melillo JM, Clein JS, Dargaville RJ, Kicklighter DW, Myneni RB, Dong J, Romanovsky VE, Harden J, Hobbie JE (2003) Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics. Tellus B 55:751–776

    Google Scholar 

  • Ziverts A, Apsite E (2005) Simulation of daily runoff and water level for the Lake Butrnieks. In: Merkuryev Y, Zobel R, Kerckhoffs E (eds) Proceedings 19th European Conference on Modelling and Simulation. European Council for Modelling and Simulation. Riga, Latvia

    Google Scholar 

  • Zylicz T (1997) Agriculture and environment in Poland. Ambio 26:445–447

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, B. et al. (2008). Climate-related Change in Terrestrial and Freshwater Ecosystems. In: Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72786-6_4

Download citation

Publish with us

Policies and ethics