Skip to main content

Abstract

This chapter focuses on summarising projections of future anthropogenic climate change for the Baltic Sea Basin. This includes the science of climate change and how future projections are made, taking into account anthropogenic influence on greenhouse gases (GHG). Looking forward to-ward future climates requires using state-of-the-art modelling tools to represent climate processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achberger C (2004) Recent and future regional climate variations in Sweden in relation to large-scale circulation. Earth Sciences Centre, A92. Göteborg University

    Google Scholar 

  • Achberger C, Linderson ML, Chen D (2003) Performance of the Rossby Centre regional Atmospheric model in Southern Sweden: Comparison of simulated and observed precipitation. Theor App Climatol 76:219–234

    Google Scholar 

  • Achberger C, Chen D, Alexandersson H (2006) The surface winds of Sweden during 1999–2000. Int J Climatol 26:159–178

    Google Scholar 

  • Alexandersson H, Tuomenvirta H, Schmith T, Iden K (2000) Trends of storms in NW Europe derived from an updated pressure data set. Clim Res 14:71–73

    Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Google Scholar 

  • Andersen HE, Kronvang B, Larsen SE, Hoffmann CC, Jensen TS, Rasmussen EK (2006) Climatechange impacts on hydrology and nutrients in a Danish lowland river basin. Sci Total Env 365: 223–237

    Google Scholar 

  • Andréasson J, Gardelin M, Bergström S (2002) Modelling hydrological impacts of climate change in the Lake Vänern region in Sweden. Vatten 58:25–32

    Google Scholar 

  • Andréasson J, Bergström S, Carlsson B, Graham LP, Lindström G (2004) Hydrological change — climate change impact simulations for Sweden. Ambio 33:228–234

    Google Scholar 

  • Arnell NW (1998) Climate change and water resources in Britain. Climatic Change 39:83–110

    Google Scholar 

  • Arnell NW (1999) The effect of climate change on hydrological regimes in Europe: A continental perspective. Glob Env Change 9:5–23

    Google Scholar 

  • Arnell NW, Hudson DA, Jones RG (2003) Climate change scenarios from a regional climate model: Estimating change in runoff in southern Africa. J Geophy Res 108:4519, doi: 10.1029/2002JD002782

    Google Scholar 

  • Arpe K, Bengtsson L, Golitsyn GS (2000) Analysis of changes in hydrological regime on the Lake Ladoga watershed and in the discharge of the Neva River in 20th and 21th centuries using a global climate model. Russ Meteorol Hydrol 12:5–13

    Google Scholar 

  • Baerens C, Hupfer P (1999) Extremwasserstände an der deutschen Ostseeküste nach Beobachtungen und in einem Treibhausgasszenario (Extreme water levels at the German Baltic Sea coast according to observations and a greenhouse gas scenario). Die Küste 61:47–72 (in German)

    Google Scholar 

  • Barthelet P, Terray L, Valcke S (1998) Transient CO2 experiment using the ARPEGE/OPAICE non flux corrected coupled model. Geophys Res Lett 25:2277–2280

    Google Scholar 

  • Benestad RE (2002a) Empirically downscaled multimodel ensemble temperature and precipitation scenarios for Norway. J Clim 15:3008–3027

    Google Scholar 

  • Benestad RE (2002b) Empirically downscaled climate scenarios for northern Europe. Clim Res 21: 105–125

    Google Scholar 

  • Benestad RE (2004) Tentative probabilistic temperature scenarios for northern Europe. Tellus A 56: 89–101

    Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in european climate: An exploration of regional climate model projections. Climatic Change 81:71–95

    Google Scholar 

  • Bergström S (1976) Development and application of a conceptual runoff model for Scandinavian catchments. Doctoral thesis, Department of Water Resources Engineering, Institute of Technology, Lund University

    Google Scholar 

  • Bergström S (1995) The HBV Model In: Singh VP (ed) Computer Models of Watershed Hydrology. Water Resources Publications, Highlands Ranch Colorado

    Google Scholar 

  • Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950–1990. Ambio 23:280–287

    Google Scholar 

  • Bergström S, Carlsson B, Gardelin M, Lindström G, Pettersson A, Rummukainen M (2001) Climate change impacts on runoff in Sweden — assessments by global climate models dynamical downscaling and hydrological modelling. Clim Res 16:101–112

    Google Scholar 

  • Bergström S, Andréasson J, Beidring S, Carlsson B, Graham LP, Jónsdóttir JF, Engeland K, Turunen MA, Vehviläinen B, Førland E J (2003) Climate Change Impacts on Hydropower in the Nordic Countries — State of the art and discussion of principles. CWE Report no 1, CWE Hydrological Models Group, Rejkjavik, Iceland

    Google Scholar 

  • Bertrand C, Van Ypersele JP, Berger A (2002) Are natural climate forcings able to counteract the projected anthropogenic global warming? Climatic Change 55:413–427

    Google Scholar 

  • Bjorge D, Haugen JE, Nordeng TE (2000) Future climate in Norway. DNMI Research Report no 103

    Google Scholar 

  • Blenckner T, Chen D (2003) Comparison of the impact of regional and North Atlantic atmospheric circulation on an aquatic ecosystem. Clim Res 23:131–136

    Google Scholar 

  • Boer GJ, Yu B (2003) Climate sensitivity and response. Clim Dyn 20:415–429

    Google Scholar 

  • Boville BA, Gent PR (1998) The NCAR climate system model version One. J Clim 11:1115–1130

    Google Scholar 

  • Braconnot P, Marti O, Joussaume S (1997) Adjustment and feedbacks in a global coupled oceanatmosphere model. Clim Dyn 13:507–519

    Google Scholar 

  • Busuioc A, Chen D, Hellström C (2001a) Temporal and spatial variability of precipitation in Sweden and its link with the large scale atmospheric circulation. Tellus 53A,3:348–367

    Google Scholar 

  • Busuioc A, Chen D, Hellström C (2001b) Performance of statistical downscaling models in GCM validation and regional climate estimates: Application for Swedish precipitation. Int J Climatol 21: 557–578

    Google Scholar 

  • Butina M, Melnikova G, Stikute I (1998a) Potential impact of climate change on the hydrological regime in Latvia. In: Raschke E, Isemer HJ (eds) Conference Proceedings of the Second Study Conference on BALTEX, International BALTEX Secretariat Publication No 11

    Google Scholar 

  • Butina M, Melnikova G, Stikute I (1998b) Potential impact of climate change on the hydrological regime in Latvia. In: Lemmelä R, Helenius N (eds) Proceedings of the Second International Conference on Climate and Water. Espoo, Finland 17-20 August 1998, 3:1610–1617

    Google Scholar 

  • Carlsson B, Sanner H (1996) Modelling influence of river regulation on runoff to the Gulf of Bothnia. Nord Hydrol 27:337–350

    Google Scholar 

  • Chen D (2000) A monthly circulation climatology for Sweden and its application to a winter temperature case study. Int J Climatol 20:1067–1076

    Google Scholar 

  • Chen D, Achberger C (2006) Past and future atmospheric circulation over the Baltic region based on observation reanalysis and GCM simulations. Research Report C74 Earth Sciences Centre Göteborg University, Sweden

    Google Scholar 

  • Chen D, Hellström C (1999) The influence of the North Atlantic Oscillation on the regional temperature variability in Sweden: Spatial and temporal variations. Tellus 51A,4:505–516

    Google Scholar 

  • Chen D, Li X (2004) Scale dependent relationship between maximum ice extent in the Baltic Sea and atmospheric circulation. Glob Planet Change 41:275–283

    Google Scholar 

  • Chen D, Omstedt A (2005) Climate-induced variability of sea level in Stockholm: Influence of air temperature and atmospheric circulation. Adv Atmos Sci 20,5:655–664

    Article  Google Scholar 

  • Chen D, Achberger C, Räisänen J, Hellström C (2006) Using statistical downscaling to quantify the GCM-related uncertainty in regional climate change scenarios: A case study of Swedish precipitation. Adv Atmos Sci 23,1:54–60

    Google Scholar 

  • Christensen JH, Christensen OB (2003) Severe summertime flooding in Europe. Nature 421:805–806

    Google Scholar 

  • Christensen JH, Machenhauer B, Jones RG, Schär C, Ruti PM, Castro M, Visconti G (1997) Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim Dyn 13:489–506

    Google Scholar 

  • Christensen JH, Räisänen J, Iversen T, Bjorge D, Christensen OB, Rummukainen M (2001) A synthesis of regional climate change simulations-a Scandinavian perspective. Geophys Res Lett 28: 1003–1006

    Google Scholar 

  • Christensen JH, Carter TR, Giorgi F (2002) Prudence employs new methods to assess European climate change. EOS 83:147

    Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M (2007) Evaluating the performance and utility of regional climate models: The PRUDENCE project. Climatic Change 81:1–6

    Google Scholar 

  • Christensen OB, Christensen JH (2004) Intensification of extreme European summer precipitation in a warmer climate. Glob Planet Change 44:107–117

    Google Scholar 

  • Christensen OB, Christensen JH, Machenhauer B, Botzet M (1998) Very-high-resolution regional climate simulations over Scandinavia present climate. J Clim 11:3204–3229

    Google Scholar 

  • Christensen OB, Christensen JH, Botzet M (2002) Heavy precipitation occurrence in Scandinavia investigated with a regional climate model. In: Beniston M (ed) Climatic Change: Implications for the hydrological cycle and for water management. Kluwer

    Google Scholar 

  • Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in sea level. In: IPCC Climate Change 2001: The scientific basis contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York

    Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: IPCC Climate Change 2001: The scientific basis contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York

    Google Scholar 

  • De Castro M, Gallardo C, Jylhä K, Tuomenvirta H (2007) The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Clim Change 81:329–341

    Google Scholar 

  • De Roo A, Schmuck G (2002) Assessment of the effects of engineering, land use and climate scenarios on flood risk in the Oder catchment. European Commission, Joint Research Centre, Institute for Environment and Sustainability

    Google Scholar 

  • Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, De Castro M, Van Den Hurk B (2007) An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change 81:53–70

    Google Scholar 

  • Déqué M, Marquet P, Jones RG (1998) Simulation of climate change over Europe using a global variable resolution general circulation model. Clim Dyn 14:173–189

    Google Scholar 

  • Diansky NA, Volodin EM (2002) Simulation of present-day climate with a coupled atmosphere-ocean general circulation model. Izvestia Atmos Ocean Phys 38:732–747

    Google Scholar 

  • Döscher R, Meier HEM (2004) Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea. Ambio 33:242–248

    Google Scholar 

  • Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U, Graham LP (2002) The development of the regional coupled ocean-atmosphere model RCAO. Boreal Env Res 7:183–192

    Google Scholar 

  • Ekman M (1988) The world’s longest continued series of sea level observations. Pure Appl Geophys 127:73–77

    Google Scholar 

  • Emori S, Nozawa T, Abe-Ouchi A, Numaguti A, Kimoto M, Nakajima T (1999) Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering. J Met Soc Jpn 77:1299–1307

    Google Scholar 

  • Engen-Skaugen T, Roald LA, Beldring S, Førland EJ, Tveito OE, Engeland K, Benestad R (2005) Climate change impacts on water balance in Norway. Research Report No 1/2005 Climate Norwegian Meteorological Institute Oslo

    Google Scholar 

  • Fenger J, Buch E, Jacobsen PR (2001) Monitoring and impacts of sea level rise at Danish coasts and near shore infrastructures. In: Jørgensen AM, Fenger J, Halsnaes K (eds) Climate change research-Danish Contributions. Danish Climate Centre Copenhagen, pp. 237–254

    Google Scholar 

  • Ferro CAT (2004) Attributing variation in a regional climate change modelling experiment. PRUDENCE working note available at http://prudence.dmi.dk/public/publications/analysis_of_variance.pdf

  • Ferro CAT, Hannachi A, Stephenson DB (2005) Simple techniques for describing changes in probability distributions of weather and climate. J Clim 18:4344–4354

    Google Scholar 

  • Flato GM, Boer GJ (2001) Warming asymmetry in climate change experiments. Geophys Res Lett 28: 195–198

    Google Scholar 

  • Flato GM, Boer GJ, Lee WG, McFarlane NA, Ramsden D, Reader MC, Weaver AJ (2000) The Canadian centre for climate modelling and analysis global coupled model and its climate. Clim Dyn 16: 451–467

    Google Scholar 

  • Forster PM, De F, Blackburn M, Glover R, Shine KP (2000) An examination of climate sensitivity for idealised climate change experiments in an intermediate general circulation model. Clim Dyn 16: 833–849

    Google Scholar 

  • Fossdal ML, Saelthun NR (1993) Energy planning models — climate change. Report from a Nordic expert meeting. NVE-report 08/1993 Norwegian Water Resources and Energy Administration, Oslo

    Google Scholar 

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J Geophys Res 108,D3, 4124 doi: 101029/2002JD002287

    Google Scholar 

  • Gardelin M, Andreasson J, Carlsson B, Lindström G, Bergström S (2002a) Modelling av effekter av klimatförändringar på tillrinningen till vattenkraftsystemet (Modelling of effects of climate change on inflow to the hydropower system). Elforsk Report 02:27 Elforsk Stockholm (in Swedish)

    Google Scholar 

  • Gardelin M, Bergström S, Carlsson B, Graham LP, Lindström G (2002b) Climate change and water resources in Sweden — analysis of uncertainties. In: Beniston M (ed) Climatic Change: Implications for the Hydrological Cycle and for Water Management. Advances in Global Change Research. Kluwer, Dordrecht

    Google Scholar 

  • Gellens D, Roulin E (1998) Streamflow response of Belgian catchments to IPCC climate change scenarios. J Hydrol 210:242–258

    Google Scholar 

  • Gillett NP, Zwiers FW, Weaver AJ, Stott PA (2003) Detection of human influence on sea-level pressure. Nature 422:292–294

    Google Scholar 

  • Giorgi F, Marinucci M (1991) Validation of a regional atmospheric model over Europe: Sensitivity of wintertime and summertime simulations to selected physics parameterizations and lower boundary conditions. Q J Roy Met Soc 117:1171–1206

    Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average uncertainty range and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J Clim 15:1141–1158

    Google Scholar 

  • Giorgi F, Mearns LO (2003) Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophys Res Lett 3012 1629 (doi:101029/2003GL017130)

    Google Scholar 

  • Giorgi F, Marinucci M, Visconti G (1990) Use of a limited area model nested in a general circulation model for regional climate simulation over Europe. J Geophys Res 95:18413–18431

    Google Scholar 

  • Giorgi F, Marinucci M, Visconti G (1992) A 2 × CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model 2 Climate change scenario. J Geophys Res 97:10011–10028

    Google Scholar 

  • Giorgi F, Hewitson B, Christensen J, Hulme M, von Storch H, Whetton P, Jones R, Mearns L, Fu C (2001) Regional climate information — evaluation and projections. In: IPCC Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York

    Google Scholar 

  • Giorgi F, Bi XQ, Pal J (2004a) Mean interannual variability and trends in a regional climate change experiment over Europe I: Present-day climate (1961–1990). Clim Dyn 22:733–756

    Google Scholar 

  • Giorgi F, Bi XQ, Pal J (2004b) Mean interannual variability and trends in a regional climate change experiment over Europe II: Climate change scenarios (2071 — 2100). Clim Dyn 23:839–858

    Google Scholar 

  • Golitsyn GS, Efimova LK, Mokhov II (2002) Izmenenija temperatury i osadkov v bassejne Ladozhskogo ozera po raschetam klimaticheskoj modeli obshchej cirkuljacii v XIX-XXI vekah (Changes of temperature and precipitation on the Lake Ladoga watershed in 19th-21st centuries simulated by a general circulation model). Izvestia RGO 134,6:80–87 (in Russian)

    Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–166

    Google Scholar 

  • Grabs WE, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Middlekoop H, Parmet BWAH, Schädler B, Schulla J, Wilke K (1997) Impact of Climate Change on Hydrological Regimes and Water Resources Management in the Rhine Basin. CHR-Report no I-16, International Commision for the Hydrology of the Rhine Basin (CHR) Lelystad

    Google Scholar 

  • Graham LP (1999a) Modeling runoff to the Baltic Sea. Ambio 28:328–334

    Google Scholar 

  • Graham, LP (2004) Climate change effects on river flow to the Baltic Sea. Ambio 33:235–241

    Google Scholar 

  • Graham LP (1999b) Modeling the large-scale hydrologic response to climate change in the Baltic Basin. In: Elíasson J (ed) Proceedings from the Northern Research Basins 12th International Symposium and Workshop, Reykjavik Iceland 23–27 August, pp. 99–110

    Google Scholar 

  • Graham LP (2002) A simple runoff routing routine for the Rossby Centre Regional Climate Model. In: Killingtveit A (ed) Proceedings from XXII Nordic Hydrological Conference, R0ros Norway 4–7 August, Nordic Hydrological Programme Report 47:573–580

    Google Scholar 

  • Graham LP, Rummukainen M, Gardelin M, Bergström S (2001) Modelling Climate Change Impacts on Water Resources in the Swedish Regional Climate Modelling Programme. In: Brunet M, Lopez D (eds) Detecting and Modelling Regional Climate Change and Associated Impacts. Springer, Berlin Heidelberg New York, pp. 567–580

    Google Scholar 

  • Graham LP, Andréasson J, Carlsson B (2007a) Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods — a case study on the Lule River Basin. Climatic Change 81:293–307

    Google Scholar 

  • Graham LP, Hagemann S, Jaun S, Beniston M (2007b) On interpreting hydrological change from regional climate models. Climatic Change 81:97–122

    Google Scholar 

  • Gregory JM, Mitchell JFB, Brady AJ (1997) Summer drought in northern midlatitudes in a timedependent CO2 climate experiment. J Clim 10:662–686

    Google Scholar 

  • Grigoryev AS, Trapeznikov JA (2002) The water level in the Ladoga Lake in the conditions of potential climate change. Water Resource 29:174–178 (in Russian)

    Google Scholar 

  • Gustafsson BG (1997) Interaction between Baltic Sea and North Sea. Dt Hydrogr Z 49:163–181

    Google Scholar 

  • Gustafsson BG (2000) Time-dependent modeling of the Baltic entrance area. 2. Water and salt exchange of the Baltic Sea. Estuaries 23:253–266

    Google Scholar 

  • Gustafsson BG (2004) Sensitivity of Baltic Sea salinity to large perturbations in climate. Clim Res 27:237–251

    Google Scholar 

  • Gutry-Korycka M (1999) Ekstremalne stany systemu hydrologicznego w perspektywie ocieplenia klimatu (fakty czy hipotezy). In: Komitet Narodowy PAN IGBP Global Change 1999 Zmiany i zmienność klimatu Polski — ich wpływ na gospodarkę ekosystemy i człowieka (Changes and variability of Poland’ s climate — their influence on economy, ecosystems and people). Łódź Conference proceedings (in Polish)

    Google Scholar 

  • Haapala J, Leppäranta M (1997) The Baltic Sea ice season in changing climate. Boreal Env Res 2: 93–108

    Google Scholar 

  • Haapala J, Meier HEM, Rinne J (2001) Numerical investigations of future ice conditions in the Baltic Sea. Ambio 30:237–244

    Google Scholar 

  • Hagemann S, Dümenil L (1999) Application of a global discharge model to atmospheric model simulations in the BALTEX region. Nordic Hydrology 30:209–230

    Google Scholar 

  • Hagemann S, Jacob D (2007) Gradient in the climate change signal of European discharge predicted by a multi-model ensemble. Climatic Change 81:309–327

    Google Scholar 

  • Hagemann S, Machenhauer B, Christensen OB, Déqué M, Jacob D, Jones R, Vidale PL (2002) Intercomparison of water and energy budgets simulated by regional climate models applied over Europe. Max-Planck-Institute for Meteorology Rep 338. Hamburg, Germany

    Google Scholar 

  • Hagemann S, Machenhauer B, Jones R, Christensen OB, Déqué M, Jacob D, Vidale PL (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23:547–567

    Google Scholar 

  • Hall MM, Bryden HL (1982) Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res 29:339–359

    Google Scholar 

  • Hamlet AF, Lettenmaier D (1999) Effects of climate change on hydrology and water resources in the Columbia River Basin. J Am Water Resour Assoc 35:1597–1623

    Google Scholar 

  • Hanssen-Bauer I, Tveito OE, Førland EJ (2000) Temperature scenarios for Norway: Empirical Downscaling from the ECHAM4/OPYC3 GSDIO integration. DNMI Report no 24/00 KLIMA Norwegian Meteorological Institure Oslo Norway

    Google Scholar 

  • Hanssen-Bauer I, Tveito OE, Førland EJ (2001) Precipitation scenarios for Norway Empirical downscaling from ECHAM4/OPYC3 DNMI Report no 10/01 KLIMA Norwegian Meteorological Institute Oslo Norway

    Google Scholar 

  • Hanssen-Bauer I, Førland E, Haugen JE, Tveito OE (2003) Temperature and precipitation scenarios for Norway: Comparison of results from dynamical and empirical downscaling. Clim Res 25:15–27

    Google Scholar 

  • Hanssen-Bauer I, Achberger C, Benestad R, Chen D, Førland E (2005) Empirical-statistical downscaling of climate scenarios over Scandinavia: A review. Clim Res 29:255–268

    Google Scholar 

  • Harvey LDD (2004) Characterizing the annual-mean climatic effect of anthropogenic CO2 and aerosol emissions in eight coupled atmosphere-ocean GCMs. Clim Dyn 23:569–599

    Google Scholar 

  • Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Res Ass 36:387–398

    Google Scholar 

  • Hegerl GC, Zwiers FV, Stott P, Kharin VV (2004) Detectability of anthropogenic changes in annual temperature and precipitation extremes. J Clim 17:3683–3700

    Google Scholar 

  • Heino R, Kitaev L (2003) INTAS project (2002–2005): Snow cover changes over Northern Eurasia during the last century: Circulation consideration and hydrological consequences (SCCONE). BALTEX Newsletter 5: 8–9

    Google Scholar 

  • Hellström C, Chen D, Achberger C, Räisänen J (2001) A Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Clim Res 19:45–55

    Google Scholar 

  • Henderson-Sellers A, Hansen AM (1995) Climate Change Atlas. Atmospheric and Oceanographic Sciences Library 17. Kluwer

    Google Scholar 

  • Hennessy KJ, Gregory JM, Mitchell JFB (1997) Changes in daily precipitation under enhanced greenhouse conditions. Clim Dyn 13:667–680

    Google Scholar 

  • Heyen H, Zorita E, von Storch H (1996) Statistical downscaling of monthly mean North Atlantic airpressure to sea level anomalies in the Baltic Sea. Tellus 48A:312–323

    Google Scholar 

  • Hirst A, O’ Farrell SP, Gordon HP (2000) Comparison of a coupled ocean-atmosphere model with and without oceanic eddy-induced advection Part I: Ocean spinup and control integrations. J Clim 13: 139–163

    Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips A (2004) Twentieth century North Atlantic climate change Part II: Understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405

    Google Scholar 

  • Houghton JT, Callendar BA, Varney SK (eds) (1992) Climate Change 1992-The Supplementary Report to the IPCC Scientific Assessment. Intergovernmental Panel on Climate Change. Cambridge University Press

    Google Scholar 

  • Huffman GJ, Adler RF, Arkin A, Chang A, Ferraro R, Gruber A, Janowiak J, Joyce RJ, Mc Nab A, Rudolf B, Schneider U, Xie P (1997) The Global Precipitation Climatology Project (GPCP) combined precipitation data set. Bull Am Met Soc 78:5–20

    Google Scholar 

  • Hulme M, Barrow EM, Arnell NW, Harrison PA, Johns TC, Downing TE (1999) Relative impacts of human-induced climate change and natural variability. Nature 397:688–691

    Google Scholar 

  • Huntingford C, Cox PM (2000) An analogue model to derive additional climate change scenarios from existing GCM simulations. Clim Dyn 16:575–586

    Google Scholar 

  • Hurrell JW, Van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change 36:301–326

    Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) (2003) The North Atlantic Oscillation: Climate Significance and Environmental Impact. Geophys Monogr Series 134

    Google Scholar 

  • Hurrell JW, Hoerling MP, Phillips A, Xu T (2004) Twentieth century North Atlantic climate change Part I: Assessing determinism. Clim Dyn 23:371–389

    Google Scholar 

  • Huybrechts P, De Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12:2169–2188

    Google Scholar 

  • ILMAVA Project (2002) Effect of Climate Change on Energy Resources in Finland Final report on the Ilmava Project within the Climtech Programme. Tammelin B, Forsius J, Jylhä J, Järvinen P, Koskela J, Tuomenvirta H, Turunen MA, Vehviläinen B, Venäläinen A, Finnish Meteorological Institute Helsinki (in Finnish)

    Google Scholar 

  • IPCC (2001a) Climate Change 2001: The scientific basis contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York

    Google Scholar 

  • IPCC (2001b) Climate Change 2001: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York

    Google Scholar 

  • Jacob D, Van Den Hurk B, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson S, Karstens U, Köpken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass B, Smith R, Yang X (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77:19–43

    Google Scholar 

  • Jansons V, Butina M (1998) Potential impacts of climate change on nutrient loads from small catchments. In: Lemmelä R, Helenius N (eds) Proceedings of the Second International Conference on Climate and Water, Espoo Finland 17–20 August 1998, 2

    Google Scholar 

  • Järvet A (1998) An assessment of the climate change impact on groundwater regime. In: Kallaste T, Kuldna P (eds) Climate Change Studies in Estonia, Ministry of Environment Republic of Estonia, SEI Tallinn

    Google Scholar 

  • Johansson MM, Kahma KK, Boman H, Launiainen J (2004) Scenarios for sea level on the Finnish coast. Boreal Env Res 9:153–166

    Google Scholar 

  • Johns TC, Carnell RE, Crossley JF, Gregory JM, Mitchell JFB, Senior CA, Tett SFB, Wood RA (1997) The second Hadley Centre Coupled ocean-atmosphere GCM: Model description spinup and validation. Clim Dy 13:103–134

    Google Scholar 

  • Jones CG, Ullerstig A (2002) The representation of precipitation in the RCA2 model (Rossby Centre Atmosphere Model Version 2). SWECLIM Newsletter 12:27–39

    Google Scholar 

  • Jones CG, Willén U, Ullerstig A, Hansson U (2004) The Rossby Centre Regional Atmospheric Climate Model — Part I: Model climatology and performance for the present climate over Europe. Ambio 33:199–210

    Google Scholar 

  • Jones RG, Murphy JM, Noguer M (1995) Simulation of climate-change over Europe using a nested regional climate model, 1. Assessment of control climate including sensitivity to location of lateral boundaries. Q J Roy Met Soc 121:1413–1449

    Google Scholar 

  • Jones RG, Murphy JM, Noguer M, Keen AB (1997) Simulation of climate change over Europe using a nested regional climate model, 2. Comparison of driving and regional model responses to a doubling of carbon dioxide. Q J Roy Met Soc 123:265–292

    Google Scholar 

  • Joshi M, Shine K, Ponater M, Stuber N, Sausen R, Li L (2003) A comparison of climate response to different radiative forcings in three general circulation models: Towards an improved metric of climate change. Clim Dyn 20:843–854

    Google Scholar 

  • Jylhä K, Tuomenvirta H, Ruosteenoja K (2004) Climate change projections for Finland during the 21st century. Boreal Env Res 9:127–152

    Google Scholar 

  • Jylhä K, Fronzek S, Tuomenvirta H, Carter TR, Ruosteenoja K (2007) Changes in frost and snow in Europe and Baltic sea ice by the end of the 21st century. Climatic Change (in press)

    Google Scholar 

  • Järvet A, Jaagus J, Roosaare J, Tamm T, Vallner L (2000) Impact of climate change on water balance elements in Estonia. Estonia Geographical Studies 8:35–55

    Google Scholar 

  • Kaas E, Frich P (1995) Diurnal temperature range and cloud cover in the Nordic countries: Observed trends and estimates for the future. Atmos Res 37:211–228

    Google Scholar 

  • Kaczmarek Z (1993) Water balance model for climate impact analysis. Acta Geophys Pol 41:423–437

    Google Scholar 

  • Kaczmarek Z (1996) Wpływ klimatu na bilans wody (Impact of climate on water balance). In: Kaczmarek Z (ed) Wplyw niestacjonarności i globalnych procesów geofizycznych na zasoby wodne Polski Oficyna (The impact of nonlinearity and global geophysical processes on water resources in Poland). Wydawnicza Politechniki Warszawskiej Warszawa, 33–53 (in Polish)

    Google Scholar 

  • Kaczmarek Z (2003) Wplyw klimatu na gospodarkę wodną (Impact of climate on water management). In: Komitet Prognoz “Polska 2000 Plus” (ed) Czy Polsce grozą katastrofy klimatyczne? IGBP PAN Warszawa, 32–52 (in Polish)

    Google Scholar 

  • Kaczmarek Z (2004) Climate change and European water resources. In: Liszewska M (ed) Potential climate changes and sustainable water management. Publ Inst Geophys Pol Acad Sc 377:33–38

    Google Scholar 

  • Kaczmarek Z, Jurak D (2003) Assessment and prediction of hydrological droughts. Glob Change 10: 79–95

    Google Scholar 

  • Kaczmarek Z, Napiórkowski J, Strzepek KM (1996) Climate change impacts on the water supply system in the Warta River Catchment Poland. Int J Water Resour Dev 12:165–180

    Google Scholar 

  • Kaczmarek Z, Napiórkowski J, Jurak D (1997) Impact of climate change on water resources in Poland. Publ Inst Geophys Pol Acad Sc E-1

    Google Scholar 

  • Kalinin M (2004) Climate and Water Resources of Belarus. In: Isemer HJ (ed) Conference Proceedings of the Fourth Study Conference on BALTEX, International BALTEX Secretariat Publication No 29

    Google Scholar 

  • Kallaste T, Kuldna P (1998) Climate Change Studies in Estonia. Ministry of Environment Republic of Estonia SEI Tallinn

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Chelliah M, Zhu Y, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelweski C, Wand J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40 reanalysis project. Bull Am Met Soc 77:437–471

    Google Scholar 

  • Kauker F, Meier HEM (2003) Modeling decadal variability of the Baltic Sea Part 1: Reconstructing atmospheric surface data for the period 1902–1998. J Geophys Res 108(C8) 3267 doi: 101029/ 2003JC001797

    Google Scholar 

  • Keevallik S (1998) Climate change scenarios for Estonia. In: Tarand A, Kallaste T (eds) Country case study on climate change impacts and adaptation assessments in the Republic of Estonia. Ministry of Environment Republic of Estonia SEI Tallinn

    Google Scholar 

  • Kilsby CG, O’ Connell PE, Fallows CS, Hashemi AM (1999) Generation of precipitation scenarios for assessing climate change impacts on river basin hydrology. In: Balabanis P, Bronstert A, Casale R, Samuels P (eds) Proceedings from Ribamod — River Basin Modelling Management and Flood Mitigation Concerted Action — Final Workshop Wallingford United Kingdom 26–27 February 1998. Office for Official Publications of the European Communities

    Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Van Den Dool H, Jenne R, Fiorino M (2001) The NCEP/NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull Am Met Soc 82:247–268

    Google Scholar 

  • Kjellström E (2004) Recent and future signatures of climate change in Europe. Ambio 33:193–198

    Google Scholar 

  • Kjellström E, Ruosteenoja K (2007) Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Climatic Change 81:281–291

    Google Scholar 

  • Kjellström E, Döscher R, Meier HEM (2005) Atmospheric response to different sea surface temperatures in the Baltic Sea: Coupled versus uncoupled regional climate model experiments. Nord Hydrol 36:397–409

    Google Scholar 

  • Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär C (2007) Modelling daily temperature extremes: Recent climate and future changes over Europe. Climatic Change 81:249–265

    Google Scholar 

  • Knutson TR, Delworth TL, Dixon KW, Stouffer RJ (1999) Model assessment of regional surface temperature trends (1949–1997). J Geophys Res 104:30981–30996

    Google Scholar 

  • Kondratyev S (2001) Final Report of the Institute of Limnology RAS to the Project “The Impact of long-term changes in the weather on the dynamics of lakes in the United Kingdom Finland and Russia”, No 96-1749

    Google Scholar 

  • Kondratyev S, Bovykin I (2000) Hydrologic response of small lake and its drainage basin to precipitation and air temperature changes. Proc of Univ of Joensuu Karelian Inst 129:423–427

    Google Scholar 

  • Kondratyev S, Bovykin V (2003) The effect of possible climatic changes on the hydrological regime of a catchment — lake system (in Russian). Sov Meteorol Hydrol 10:86–96

    Google Scholar 

  • Kondratyev S, Gronskaya T, Wirkkala RS, Bovykin I, Yefremova L, Ignatieva N, Raspletina G, Chernykh O, Gayenko M, Markova E, Aksenchuk I (1998) Lake Ladoga and its drainage basin: GIS development and application. Univ of Joensuu Karelian Inst Working Papers 5:109–118

    Google Scholar 

  • Kont A, Jaagus J, Aunap R (2003) Climate change scenarios and the effect of sea-level rise for Estonia. Glob Planet Change 36:1–15

    Google Scholar 

  • Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilisation of the thermohaline circulation in a greenhouse warming simulation. J Clim 13:1809–1813

    Google Scholar 

  • Leckebusch G, Ulbrich U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob Planet Change 44:181–193

    Google Scholar 

  • Legates DR, Wilmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected global precipitation. Int J Climatol 10:111–127

    Google Scholar 

  • Lehner B, Henrichs T, Döll P, Alcamo J (2001) EuroWasser — Model-based assessment of European water resources and hydrology in the face of global change. Kassel World Water Series 5. Center for Environmental Systems Research, University of Kassel, Germany

    Google Scholar 

  • Lenderink G, Buishand A, Van Deursen W (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol Earth Sys Sci 33:1145–1159

    Article  Google Scholar 

  • Lettenmaier DP, Wood AW, Palmer RN, Wood EF, Stakhiv EZ (1999) Water resources implications of global warming: A US regional perspective. Climatic Change 43:537–579

    Google Scholar 

  • Linderson ML, Achberger C, Chen D (2004) Statistical downscaling and scenario construction of precipitation in Scania southern Sweden. Nord Hydrol 35:261–278

    Google Scholar 

  • Lindström G, Gardelin M, Persson M (1994) Conceptual Modelling of Evapotranspiration for Simulations of Climate Change Effects. SMHI Reports Hydrology No 10, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

    Google Scholar 

  • Lohmann D, Nolte-Holube R, Raschke E (1996) A large-scale horizontal routing model to be coupled to land surface parameterization schemes. Tellus 48A:708–721

    Google Scholar 

  • Manabe S, Stouffer RJ, Spelman MJ, Bryan K (1991) Transient responses of a coupled oceanatmosphere model to gradual changes of atmospheric CO2 Part I: Annual mean response. J Clim 4: 785–818

    Google Scholar 

  • McAvaney BJ, Covey C, Joussaume S, Kattsov V, Kitoh A, Ogana W, Pittman AJ, Weaver AJ, Wood RA, Zhao ZC (2001) Model evaluation. In: IPCC: Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York

    Google Scholar 

  • Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ (2000) The Coupled Model Intercomparison Project (CMIP). Bull Am Met Soc 81:313–318

    Google Scholar 

  • Meier HEM (2001) The first Rossby Centre regional climate scenario for the Baltic Sea using a 3D coupled ice-ocean model. Reports Meteorology and Climatology No95, SMHI Norrköping Sweden

    Google Scholar 

  • Meier HEM (2002a) Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea Part 1: Model experiments and results for temperature and salinity. Clim Dyn 19:237–253

    Google Scholar 

  • Meier HEM (2002b) Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea Part 2: Results for sea ice. Clim Dyn 19:255–266

    Google Scholar 

  • Meier HEM (2005) Modeling the age of Baltic Sea water masses: Quantification and steady state sensitivity experiments. J Geophys Res 110 C02006 doi:101029/2004JC002607

    Google Scholar 

  • Meier HEM (2006) Baltic Sea climate in the late twenty-first century: A dynamical downscaling approach using two global models and two emissions scenarios. Clim Dyn 27:39–68 DOI 101007/ s00382-006-0124-x

    Google Scholar 

  • Meier HEM, Kauker F (2003a) Modeling decadal variability of the Baltic Sea Part 2: Role of freshwater inflow and large-scale atmospheric circulation for salinity. J Geophys Res 108,C11, 3368 doi: 101029/2003JC001799

    Google Scholar 

  • Meier HEM, Kauker F (2003b) Sensitivity of the Baltic Sea salinity to the freshwater supply. Clim Res 24:231–242

    Google Scholar 

  • Meier HEM, Döscher R, Halkka A (2004a) Simulated distributions of Baltic sea-ice in warming climate and consequences for the winter habitat of the Baltic ringed seal. Ambio 33:249–256

    Google Scholar 

  • Meier HEM, Broman B, Kjellström E (2004b) Simulated sea level in past and future climates of the Baltic Sea. Clim Res 27:59–75

    Google Scholar 

  • Meier HEM, Broman B, Kallio H, Kjellström E (2006a) Projections of future surface winds sea levels and wind waves in the late 21st century and their application for impact studies of flood prone areas in the Baltic Sea region. In: Schmidt-Thome P (ed) Special Paper 41, Geological Survey of Finland Helsinki Finland

    Google Scholar 

  • Meier HEM, Kjellström E, Graham LP (2006b) Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophys Res Lett 33, L15705 doi:101029/2006GL026488

    Google Scholar 

  • Meleshko VP, Kattsov VM, Govorkova VA, Malevsky-Malevich SP, Nadyozhina ED, Sporyshev PV (2004) Anthropogenic climate change in XXI century in Northern Eurasia. Sov Meteorol Hydrol 7: 5–26 (in Russian)

    Google Scholar 

  • Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet BWAH, Schädler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine Basin. Clim Change 49:105–128

    Google Scholar 

  • Miętus M (1999) Rola regionalnej cyrkulacji atmosferycznej w ksztaltowaniu warunków klimatycznych i oceanograficznych w polskiej strefie brzegowej Morza Baltyckiego (The influence of regional atmospheric circulation on climate and oceanographic conditions in the Polish coastal zone). Instytut Meteorologii i Gospodarki Wodnej Warszawa (in Polish with English Summary)

    Google Scholar 

  • Miętus M (2000) Climatic and oceanographic conditions in the southern Baltic area under an increasing CO2 concentration. Geogr Polon 73:89–97

    Google Scholar 

  • Miętus M, Filipiak J, Owczarek M (2004) Klimat wybrzeza poludniowego Baltyku Stan obecny i perspektywy zmian (Climate at the seashore of the southern Baltic Sea. Present conditions and future changes). In: Cyberski J (ed) Srodowisko polskiej strefy poludniowego Baltyku — stan obecny i przewidywane zmiany w przededniu integracji europejskiej. Wydawnictwo Gdanskie Gdansk, pp. 11–44 (in Polish)

    Google Scholar 

  • Ministry of Environmental Protection and Regional Development (2001) The Third National Communication of the Republic of Latvia under the United Nations Framework Convention on Climate Change

    Google Scholar 

  • Ministry of the Environment (2003) Lithuania’ s Second National Communication under the Framework Convention on Climate Change

    Google Scholar 

  • Mitchell JFB, Manabe S, Meleshko V, Tokioka T (1990) Equilibrium climate change — and its implications for the future In: Houghton JT et al. (eds) Climate Change. The IPCC Scientific Assessment. Cambridge University Press, Cambridge New York, pp. 131–172

    Google Scholar 

  • Mitchell JFB, Johns TC, Eagles M, Ingram WJ, Davis RA (1999) Towards the construction of climate change scenarios. Climatic Change 41:547–581

    Google Scholar 

  • Mitchell JFB, Karoly DJ, Hegerl GC, Zwiers FW, Allen MR, Marengo J (2001) Detection of climate change and attribution of causes. In: IPCC Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York

    Google Scholar 

  • Mitchell TD (2003) Pattern scaling: An examination of the accuracy of the technique for describing future climate. Clim Change 60:217–242

    Google Scholar 

  • Moberg A, Jones P (2004) Regional climate model simulations of daily maximum and minimum nearsurface temperatures across Europe compared with observed station data 1961–1990. Clim Dyn 23: 695–715

    Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature 433: 613–617

    Google Scholar 

  • Munich Re Group (1999) Topics 2000 Natural catastrophes — the current position. Münchener Rückversicherungs-Gesellschaft, pp. 66, http://www.munichre.com

  • Murphy J (1999) An evaluation of statistical and dynamical techniques for downscaling local climate. J Clim 12:2256–2284

    Google Scholar 

  • Murphy J (2000) Predictions of climate change over Europe using statistical and dynamical downscaling techniques. Int J Climatol 20:489–501

    Google Scholar 

  • Murphy JM, Mitchell JFB (1994) Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide Part I Control climate and flux correction. J Clim 8:36–47

    Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Van Rooijen S, Victor N, Dadi Z (2000) Emission scenarios A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York

    Google Scholar 

  • New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate variability, Part I: Development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856

    Google Scholar 

  • Nozawa T, Emori S, Takemura T, Nakajima T, Numaguti A, Abe-Ouchi A, Kimoto M (2000) Coupled ocean-atmosphere model experiments of future climate change based on IPCC SRES scenarios. Preprints 11th Symposium on Global Change Studies. 9–14 January 2000Long Beach USA

    Google Scholar 

  • Numaguti A (1999) Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J Geophys Res 104:1957–1972

    Google Scholar 

  • Omstedt A, Chen D (2001) Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea. J Geophys Res 106,C3:4493–4500

    Google Scholar 

  • Omstedt A, Nyberg L (1996) Response of Baltic Sea ice to seasonal interannual forcing and to climate change. Tellus 48A:644–662

    Google Scholar 

  • Omstedt A, Gustafsson B, Rodhe J, Walin G (2000) Use of Baltic Sea modelling to investigate the water cycle and the heat balance in GCM and regional climate models. Clim Res 15:95–108

    Google Scholar 

  • Omstedt A, Meuller L, Nyberg L (1997) Interannual seasonal and regional variations of precipitation and evaporation over the Baltic Sea. Ambio 26:484–492

    Google Scholar 

  • Orviku K, Jaagus J, Kont A, Ratas U, Rivis R (2003) Increasing activity of coastal processes associated with climate change in Estonia. J Coastal Res 19:364–375

    Google Scholar 

  • Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: The roles of internal variability and greenhouse gas forcing. Clim Dyn 22:605–623

    Google Scholar 

  • Osborn TJ, Briffa KR, Tett SFB, Jones PD, Trigo RM (1999) Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Clim Dyn 15:685–702

    Google Scholar 

  • Power SB, Colman RA, McAvaney BJ, Dahni RR, Moore AM, Smith NR (1993) The BMRC coupled atmosphere/ocean/sea-ice model. BMRC Research Report No 37, Bureau of Meteorology Research Centre Melbourne Australia

    Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: IPCC Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge University Press, Cambridge New York

    Google Scholar 

  • Pryor SC, Barthelmie RJ (2003) Long-term trends in near-surface flow over the Baltic. Int J Climatol 23,3:271–289

    Google Scholar 

  • Pryor SC, Barthelmie RJ (2004) Use of RCM simulations to assess the impact of climate change on wind energy availability. Risø-R-1477(EN) Risø National Laboratory Roskilde Denmark

    Google Scholar 

  • Pryor SC, Barthelmie RJ and JT Schoof (2005a) The Impact of non-stationarities in the climate system on the definition of a normal wind year: A case study from the Baltic. Int J Climatol 25,6: 735–752

    Google Scholar 

  • Pryor SC, Barthelmie RJ, Kjellström E (2005b) Analyses of the potential climate change impact on wind energy resources in northern Europe using output from a Regional Climate Model. Clim Dyn 25,7–8:815–835

    Google Scholar 

  • Raab B, Vedin H (1995) Climate Lakes and Rivers. National Atlas of Sweden, vol. 14. SNA Publishing Box 45209 S-10430, Stockholm, Sweden

    Google Scholar 

  • Rauthe M, Paeth H (2004) Relative importance of Northern Hemisphere circulation modes in predicting regional climate change. J Clim 17:4180–4189

    Google Scholar 

  • Rimkus E (2001) Prognosis of maximum snow water equivalent changes in Lithuania. In: Meywerk J (ed) Conference Proceedings of the Third Study Conference on BALTEX, International BALTEX Secretariat Publication No 20

    Google Scholar 

  • Rind D, Healy R, Parkinson C, Martinson D (1995) The role of sea ice in 2 × CO2 climate sensitivity Part I: The total influence of sea ice thickness and extent. J Clim 8:449–463

    Google Scholar 

  • Roald LA, Beldring S, Vaeringstad T, Engeset R, Skaugen TE, Førland E (2002) Scenarios of annual and seasonal runoff for Norway based on climate scenarios for 2030–2049. Norwegian Water Resources and Energy Directorate Consultancy Report A 10, Norwegian Meteorological Institute Report no 19/02 KLIMA

    Google Scholar 

  • Roald LA, Beldring S, Skaugen TE, Førland EJ, Benestad R (2006) Climate change impacts in streamflow in Norway. NVE Consultancy-report A 1-2006 Norwegian Water Resources and Energy Directorate Oslo

    Google Scholar 

  • Rockel B, Woth K (2007) Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. Climatic Change 81:267–280

    Google Scholar 

  • Rodhe J, Winsor P (2002) On the influence of the freshwater supply on the Baltic Sea mean salinity. Tellus 54A:175–186

    Google Scholar 

  • Rodhe J, Winsor P (2003) Corrigendum: On the influence of the freshwater supply on the Baltic Sea mean salinity. Tellus 55A:455–456

    Google Scholar 

  • Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H (1999) Transient climate change simulations with a coupled atmosphere — ocean GCM including the tropospheric sulfur cycle. J Clim 12: 3004–3032

    Google Scholar 

  • Roosaare J (1998) Local-scale spatial interpretation of climate change impact on river runoff in Estonia. In: Lemmelä R, Helenius N (eds) Proceedings of the Second International Conference on Climate and Water Espoo Finland 17–20 August 1998, 1

    Google Scholar 

  • Rubel F, Hantel M (2001) BALTEX 1/6-degree daily precipitation climatology 1996–1998. Meteorol Atmos Phys 77:155–166

    Google Scholar 

  • Rummukainen M, Räisänen J, Ullerstig A, Bringfelt B, Hansson U, Graham LP, Willén U (1998) RCA — Rossby Centre regional atmospheric climate model: Model description and results from the first multi-year simulation. Reports Meteorology and Climatology 83, Swedish Meteorological and Hydrological Institute, Norrköping Sweden

    Google Scholar 

  • Rummukainen M, Bergström S, Källén E, Moen L, Rodhe J, Tjernström M (2000) SWECLIM: The first three years. Reports Meteorology and Climatology 94, Swedish Meteorological and Hydrological Institute Norrköping Sweden

    Google Scholar 

  • Rummukainen M, Räisänen J, Bringfelt B, Ullerstig A, Omstedt A, Willén U, Hansson U, Jones C (2001) A regional climate model for northern Europe: Model description and results from the downscaling of two GCM control simulations. Clim Dyn 17:339–359

    Google Scholar 

  • Rummukainen M, Räisänen J, Bjørge D, Christensen JH, Christensen OB, Iversen T, Jylhä K, Ólafsson H, Tuomenvirta H (2003) Regional climate scenarios for use in Nordic water resources studies. Nord Hydrol 34:399–412

    Google Scholar 

  • Rummukainen M, Bergström S, Persson G, Rodhe J, Tjernström M (2004) The Swedish Regional Climate Modelling Programme SWECLIM: A review. Ambio 4–5:176–182

    Google Scholar 

  • Ruosteenoja K, Tuomenvirta H, Jylhä K (2007) GCM-based regional temperature and precipitation change estimates for Europe under four SRES scenarios applying a super-ensemble pattern-scaling method. Climatic Change 81:193–208

    Google Scholar 

  • Russell GL, Rind D (1999) Response to CO2 transient increase in the GISS coupled model Regional coolings in a warmer climate. J Clim 12:531–539

    Google Scholar 

  • Russell GL, Miller JR, Rind D, Ruedy RA, Schmidt G, Sheth S (2000) Comparison of model and observed regional temperature changes during the past 40 years. J Geophys Res 105:14891–14898

    Google Scholar 

  • Räisänen J (1994) A comparison of the results of seven GCM experiments in northern Europe. Geophysica 11:3–30

    Google Scholar 

  • Räisänen J (2000) CO2-induced climate change in northern Europe: Comparison of 12 CMIP2 experiments. Reports Meteorology and Climatology 87, Swedish Meteorological and Hydrological Institute, Norrköping Sweden

    Google Scholar 

  • Räisänen J (2001a) CO2-induced climate change in CMIP2 experiments Quantification of agreement and role of internal variability. J Clim 14:2088–2104

    Google Scholar 

  • Räisänen J (2001b) Hiilidioksidin lisääntymisen vaikutus Pohjois-Euroopan ilmastoon globaaleissa ilmastomalleissa (The impact of increasing carbon dioxide on the climate of northern Europe in global climate models). Terra 113:139–151 (in Finnish with English abstract, figure and table captions)

    Google Scholar 

  • Räisänen J (2002) CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J Clim 15:2395–2411

    Google Scholar 

  • Räisänen J, Alexandersson H (2003) A probabilistic view on recent and near future climate change in Sweden. Tellus 55A:113–125

    Google Scholar 

  • Räisänen J, Joelsson R (2001) Changes in average and extreme precipitation in two regional climate model experiments. Tellus 53A:547–566

    Google Scholar 

  • Räisänen J, Döscher R (1999) Simulation of present-day climate in Northern Europe in the HadCM2 OAGCM. Reports Meteorology and Climatology 84, Swedish Meteorological and Hydrological Institute, Norrköping Sweden

    Google Scholar 

  • Räisänen J, Rummukainen M, Ullerstig A, Bringfelt B, Hansson U, Willén U (1999) The First Rossby Centre Regional Climate Scenario: Dynamical Downscaling of CC2-induced Climate Change in the HadCM2 GCM. Reports Meteorology and Climatology 85, Swedish Meteorological and Hydrological Institute, Norrköping Sweden

    Google Scholar 

  • Räisänen J, Rummukainen M, Ullerstig A (2001) Downscaling of greenhouse gas induced climate change in two GCMs with the Rossby Centre regional climate model for northern Europe. Tellus 53A:168–191

    Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier M, Samuelsson P, Willén U (2003) GCM driven simulations of recent and future climate with the Rossby Centre coupled atmosphere — Baltic Sea regional climate model RCAO SMHI Reports Meteorology and Climatology 101, SMHI SE 60176 Norrköping, Sweden

    Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier M, Samuelsson P, Wil lén U (2004) European climate in the late 21st century: Regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Google Scholar 

  • Saelthun NR (1996) The “Nordic” HBV model — version developed for the project Climate change and Energy Production. NVE publication no 7/1996 Norwegian Water Resources and Energy Administration Oslo

    Google Scholar 

  • Saelthun NR, Bogen J, Hartman Flood M, Laumann T, Roald LA, Tvede AM, Wold B (1990) Climate change impacts on Norwegian water resources. NVE publication V42 Norwegian Water Resources and Energy Administration Oslo

    Google Scholar 

  • Saelthun NR, Aittoniemi P, Bergström S, Einarsson K, Jóhannesson T, Lindström G, Ohlsson PE, Thomsen T, Vehviläinen B, Aamodt KO (1998) Climate Change Impacts on Runoff and Hydropower in the Nordic Countries. TemaNord 1998:522 Nordic Council of Ministers Copenhagen

    Google Scholar 

  • Saelthun NR, Bergström S, Einarsson K, Jóhannesson T, Lindström G, Thomsen T, Vehviläinen B (1999) Potential Impacts of climate change on floods in Nordic hydrological regimes. In: Balabanis P, Bronstert A, Casale R, P Samuels (eds) Proceedings from Ribamod — River Basin Modelling Management and Flood Mitigation. Wallingford United Kingdom 26–27 February 1998. Office for Official Publications of the European Communities

    Google Scholar 

  • Scaife AM, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32 L18715

    Google Scholar 

  • Schaeffer M, Selten FM, Opsteegh JD, Goosse H (2004) The influence of ocean convection patterns on high-latitude climate projections. J Clim 17:4316–4329

    Google Scholar 

  • Scharling M (2000) Klimagrid — Danmark normaler 1961–90 månedsog årsvaerdier Nedbør 10 × 10 20 × 20 & 40 × 40 km temperatur og potentiel fordampning 20 × 20 &am; 40 × 40 km (Climate grid Denmark. Climate normals 1961–90, monthly and annual values. Precipitation 10 × 10 20 × 20 & 40 × 40 km. Temperature and potential evaporation 20 × 20 & 40 × 40 km). Danish Meteorological Institute Technical Report 00-11 (in Danish)

    Google Scholar 

  • Schrum C (2001) Regionalization of climate change for the North Sea and Baltic Sea. Clim Res 18: 31–37

    Google Scholar 

  • Schrum C, Backhaus JO (1999) Sensitivity of atmosphere — ocean heat exchange and heat content in the North Sea and the Baltic Sea. Tellus 51A:526–549

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability for European summer heat waves. Nature 427:332–336

    Google Scholar 

  • Selten FM, Branstator GW, Dijkstra HA, Kliphuis M (2004) Tropical origins for recent and future Northern Hemisphere climate change. Geophys Res Lett 31 L21205 (doi: 101029/2004GL020739)

    Google Scholar 

  • Semmler T, Jacob D (2004) Modeling extreme precipitation events — a climate change simulation for Europe. Glob Planet Change 44:119–212

    Google Scholar 

  • Shindell DT, Schmidt GA, Miller RL, Rind D (2001) Northern Hemispheric climate response to greenhouse gas ozone solar and volcanic forcing. J Geophys Res 106:7193–7210

    Google Scholar 

  • Shindell DT, Miller RL, Smith GA, Pandolfo L (1999) Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399:452–455

    Google Scholar 

  • SILMU (1996) The Finnish Research Programme on Climate Change. Final Report (Roos J ed) Edita Helsinki

    Google Scholar 

  • Skaugen TE, Tveito OE (2002) Heating degree-days — Present conditions and scenario for the period 2021–2050. DNMI Report no 01/02 KLIMA Norwegian Meteorological Institute Oslo Norway

    Google Scholar 

  • Skaugen TE, Astrup M, Roald LA, Førland EJ (2002) Scenarios of extreme precipitation of duration 1 and 5 days for Norway caused by climate change. Norwegian Water Resources and Energy Directorate Consultancy Report A 7

    Google Scholar 

  • Stainforth DA, Alna T, Christensen C, Collins M, Fauli N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Pianl C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in the predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Google Scholar 

  • Stephenson DB, Pavan V (2003) The North Atlantic Oscillation in coupled climate models: A CMIP1 evaluation. Clim Dyn 20:381–399

    Google Scholar 

  • Stephenson DB, Pavan V, Collins M, Junge MM, Quadrelli R and Participating CMIP2 Modelling Groups (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: A CMIP2 multi-model assessment. Clim Dyn 27:401–420

    Google Scholar 

  • Stigebrandt A (1983) A model for the exchange of water and salt between the Baltic and the Skagerrak. J Phys Oceanogr 13:411–427

    Google Scholar 

  • Stigebrandt A, Gustafsson BG (2003) Response of the Baltic Sea to climate change — Theory and observations. J Sea Res 49:243–256

    Google Scholar 

  • Stocker TF, Schmittner A (1997) Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388:862–865

    Google Scholar 

  • Stouffer RJ, Manabe S (2003) Equilibrium response of thermohaline circulation to large changes in atmospheric CO2 concentration. Clim Dyn 20:759–773

    Google Scholar 

  • Strzepek KM, Yates DN (1997) Climate change impacts on the hydrologic resources of Europe: A simplified continental scale anlaysis. Climatic Change 36:79–92

    Google Scholar 

  • Suursaar U, Jaagus J, Kullas T (2006) Past and future changes in sea level near the Estonian coast in relation to changes in wind climate. Boreal Env Res 11:123–142

    Google Scholar 

  • Tarand A, Kallaste T (eds) (1998) Country Case Study on Climate Change Impacts and Adaptation Assessments in the Republic of Estonia Ministry of Environment Republic of Estonia. SEI Tallinn

    Google Scholar 

  • Thodsen H (2007) The influence of climate change on stream flow in Danish rivers. J Hydrol 333: 226–238

    Google Scholar 

  • Thodsen H, Erichensen A, Lumborg U, Edelvang K (2005) Effekt af afstrømnings ændringer som følge af klima aendringer på salinitet og naeringsstofforhold i Odense Fjord (The effect of climate change induced changes of river flow on salinity and nutrient conditions in the Odense fjord (in Danish)) Abstracts from Det 13 Danske Havforskermøde Copenhagen

    Google Scholar 

  • Thompson SL, Pollard D (1995) A global climate model (GENESIS) with a land-surface-transfer scheme (LSX) Part 1: Present-day climate. J Clim 8:732–761

    Google Scholar 

  • Tinz B (1996) On the relation between annual maximum extent of ice cover in the Baltic Sea level pressure as well as air temperature field. Geophysica 32:319–341

    Google Scholar 

  • Tinz B (1998) Sea ice winter severity in the German Baltic in a greenhouse gas experiment. Deutsch Hydr Z 50:33–45

    Google Scholar 

  • Tokioka T, Noda A, Kitoh A, Nikaidou Y, Nakagawa S, Motoi T, Yukimoto S, Takata K (1995) A transient CO2 experiment with the MRI CGCM Quick Report. J Meteorol Soc Jpn 73:817–826

    Google Scholar 

  • Tuomenvirta H, Heino R (1996) Climatic changes in Finland — recent findings. Geophysica 32:61–75

    Google Scholar 

  • Tuomenvirta H, Uusitalo K, Vehviläinen B, Carter T (2000) Ilmastonmuutos mitoitussade ja patoturvallisuus: Arvio sadannan ja sen ääriarvojen sekä lämpötilan muutoksista Suomessa vuoteen 2100 (Climate change, design, precipitation and dam safety: Estimation of the changes of extreme precipitation and temperature in Finland until 2100). Ilmatieteenlaitoksen raportteja 2000:4 Helsinki (in Finnish)

    Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 Reanalysis. Q J Roy Met Soc 131:2961–3012 doi:101256/qj04176

    Google Scholar 

  • Varis O, Kajander T, Lemmelä R (2004) Climate and water: From climate models to water resources management and vice versa. Climatic Change 66:321–344

    Google Scholar 

  • Vehviläinen B (1994) The watershed simulation and forecasting system in the National Board of Waters and the Environment. Publications of Water and Environment Research Institute 17 Helsinki

    Google Scholar 

  • Vehviläinen B, Huttunen M (1997) Climate change and water resources in Finland. Boreal Env Res 2: 3–18

    Google Scholar 

  • Vidale PL, Lüthi C, Frei C, Seneviratne S, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108(D18) 4586 doi:101029/2002JD002810

    Google Scholar 

  • Vidale PL, Lüthi C, Wegmann R, Schär C (2007) European climate variability in a heterogeneous multi-model ensemble. Climatic Change 81:209–232

    Google Scholar 

  • Volodin EM, Galin VY (1999) Interpretation of winter warming on Northern Hemisphere continents in 1977–94. J Clim 12:2947–2955

    Google Scholar 

  • Voss R, Sausen R, Cubasch U (1998) Periodically synchronously coupled integrations with the atmosphere-ocean general circulation model ECHAM3/LSG. Clim Dyn 14:249–266

    Google Scholar 

  • Washington WM, Meehl GA (1989) Climatic sensitivity due to increased CO2: Experiments with a coupled atmosphere and ocean general circulation model. Clim Dyn 4:1–38

    Google Scholar 

  • Washington WM, Weatherly JW, Meehl GA, Semtner AJ Jr, Bettge TW, Craig AP, Strand WG Jr, Arblaster J, Wayland VB, James VBR, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755–774

    Google Scholar 

  • Weaver AJ, Eby M, Fanning AF, Wiebe EC (1998) Simulated influence of carbon dioxide orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature 394:847–853

    Google Scholar 

  • Wetherald RT, Manabe S (1995) The mechanisms of summer dryness induced by greenhouse warming. J Clim 8:3096–3108

    Google Scholar 

  • Wigley TML, Raper SCB (1987) Thermal expansion of sea water associated with global warming. Nature 330:127–131

    Google Scholar 

  • Wigley TML, Raper SCB (1992a) Implications for climate and sea level rise of revised IPCC emissions scenarios. Nature 357:293–300

    Google Scholar 

  • Wigley TML, Raper SCB (1992b) Implications of revised IPCC emissions scenarios. Nature 357:127–131

    Google Scholar 

  • Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293:451–455

    Google Scholar 

  • World Bank (2002) Republic of Belarus Ministry of Natural Resources and Environmental Protection: Assessment of potential impact of climatic changes in the Republic of Belarus and vulnerability and adaptation of social and economic systems to climate change. Minsk

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Met Soc 78:2539–2558

    Google Scholar 

  • Yukimoto S, Endoh M, Kitamura Y, Kitoh A, Motoi T, Noda A (2000) ENSO-like interdecadal variability in the Pacific Ocean as simulated in a coupled GCM. J Geophys Res 105:13945–13963

    Google Scholar 

  • Zhang X, Shi G, Liu H, Yu Y (eds) (2000) IAP global ocean-atmosphere-land system model. Science Press Beijing China

    Google Scholar 

  • Zorita E, von Storch H (1997) A survey of statistical downscaling techniques. GKSS 97/E/20

    Google Scholar 

  • Zwiers FW, Kharin VV (1998) Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J Clim 11:2200–2222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phil Graham, L. et al. (2008). Projections of Future Anthropogenic Climate Change. In: Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72786-6_3

Download citation

Publish with us

Policies and ethics