Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/1))

Tomographic imaging started with clinical X-ray computed tomography (CT) in 1972 (Hounsfield 1973). Since then, CT technology has rapidly advanced and clinical CT became radiology’s powerhouse. In addition to clinical CT imaging, there is increasing need for preclinical exams such as scans of tissue samples, organs or whole animals (in vitro or in vivo) that are used as models to evaluate human diseases and therapies (IEEE 2004). For example, noninvasive imaging of mice gains in importance due to recent advances in mouse genomics and the production of transgenic mouse models. Longitudinal studies that use a single animal population can provide internally consistent long-term data and help to reduce the number of animals used and to cut down the costs.

This chapter will further be restricted to those widely used scanners that employ an area detector and therefore acquire the data in cone-beam geometry. Neither former generations of micro-CT scanners that use only a single detector row or even a single detector element nor scanners based on cyclotron radiation that require expensive electron accelerators and therefore are hardly available will be discussed here.

Basic CT principles are discussed at first. Then, we will detail today’s micro-CT design followed by considerations about image noise, spatial resolution and dose. To become aware of potential pitfalls, the chapter finishes with discussing sources of image artifacts. Besides one image showing nondestructive material testing, our focus lies in small animal imaging and imaging of tissue samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelsson C, Danielsson PE (1994) Three-dimensional reconstruction from cone-beam data in O(N3 log N) time. Phys Med Biol 39(3):477-491

    Article  CAS  PubMed  Google Scholar 

  • Azevedo S, Schneberk D, Fitch P, Martz H (1990) Calculation of the rotational centers in computed tomography sinograms. IEEE Trans Nucl Science 37(4):1525-1540

    Article  Google Scholar 

  • Basu S, Bresler Y (2000) An O(N2 \log2 N) filtered backprojection reconstruction algorithm for tomography. IEEE Trans Image Process 9(10):1760-1773

    Article  CAS  PubMed  Google Scholar 

  • Beekman FJ, Kamphuis C (2001) Ordered subset reconstruction for X-ray CT. Phys Med Biol. 46(7):1835-1844

    Article  Google Scholar 

  • Bresler Y, Brokish J (2003) Fast hierarchical backprojection for helical cone-beam tomography. In: ICIP 2003. Proc International Conference on Image Processing, ICIP-2003, Barcelona, Spain, pp 815-818

    Google Scholar 

  • Bronnikov A (1999) Virtual alignment of X-ray cone-beam tomography system using two calibra-tion aperture measurements. Opt Eng 38(2):381-386

    Article  Google Scholar 

  • Brooks, RA, Di Chiro G (1976a) Beam hardening in X-ray reconstructive tomography. Phys Med Biol 21(3):390-398

    Article  CAS  Google Scholar 

  • Brooks RA, Di Chiro G (1976b) Statistical limitations in X-ray reconstruction tomography. Med Phys 3:237-240

    Article  CAS  Google Scholar 

  • Coleman AJ, Sinclair M (1985) A beam-hardening correction using dual-energy computed tomog-raphy. Phys Med Biol. 30(11):1251-1256

    Article  CAS  PubMed  Google Scholar 

  • Colijn AP, Beekman FJ (2004) Accelerated simulation of cone beam X-ray scatter projections. IEEE Trans Med Imaging 23(5):584-590

    Article  CAS  PubMed  Google Scholar 

  • Crawford CR, Gullberg GT, Tsui BM (1988) Reconstruction for fan beam with an angular-dependent displaced center-of-rotation. Med Phys 15(1):67-71

    Article  CAS  PubMed  Google Scholar 

  • De Man B, Nuyts J, Dupont P, Marchal G, Suetens P (2000) Reduction of metal streak artifacts in X-ray computed tomography using a transmission maximum a posteriori algorithm. IEEE Trans Nucl Sci 47: 997-981

    Article  Google Scholar 

  • Erdogan H, Fessler JA (1999) Ordered subsets algorithms for transmission tomography. Phys Med Biol 44(11):2835-2851

    Article  CAS  PubMed  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612-619

    Article  Google Scholar 

  • Ford NL, Thornton MM, Holdsworth DW (2003) Fundamental image quality limits for micro-computed tomography in small animals. Med Phys 30(11):2869-2877

    Article  CAS  PubMed  Google Scholar 

  • Ford NL, Nikolov HN, Thornton MM, Foster PJ (2005) Prospective respiratory-gated micro-CT of free breathing rodents. Med Phys 32(9):2888-2898

    Article  PubMed  Google Scholar 

  • Gkanatsios NA, Huda W (1997) Computation of energy imparted in diagnostic radiology. Med Phys 24(4):571-579

    Article  CAS  PubMed  Google Scholar 

  • Glover GH, Pelc NJ (1981) An algorithm for the reduction of metal clip artifacts in CT reconstruc-tions. Med Phys 8(6):799-807

    Article  CAS  PubMed  Google Scholar 

  • Goodsitt M (1995) Beam hardening errors in post-processing DE-QCT. Med Phys 22(7): 1039-1047

    Article  CAS  PubMed  Google Scholar 

  • Gullberg GT, Tsui BM, Crawford CR, Edgerton E (1987) Estimation of geometrical parameters for fan beam tomography. Phys Med Biol. 32(12):1581-1594

    Article  Google Scholar 

  • Gullberg GT, Tsui BM, Crawford CR, Ballard JG, Hagius JT (1990) Estimation of geometrical parameters and collimator evaluation for cone beam tomography. Med Phys 17(2):264-272

    Article  CAS  PubMed  Google Scholar 

  • Herman GT (1978) Demonstration of beam hardening correction in computerized tomography of head cross-sections. Technical Report MIPG5. Medical Image Processing Group. State University of New York, Buffalo

    Google Scholar 

  • Herman GT (1979a) Correction for beam hardening in computed tomography. Phys Med Biol 24(1):81-106

    Article  CAS  Google Scholar 

  • Herman GT (1979b) Demonstration of beam hardening correction in computed tomography of the head. J Comput Assist Tomogr 3(3):373-378

    CAS  Google Scholar 

  • Herman GT, Trivedi S (1983) A comparative study of two postreconstruction beam hardening correction methods. IEEE Trans Med Imaging MI-2(3):128-135

    Article  Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography). Part I. Description of system. Br J Radiol 46:1016

    Article  CAS  PubMed  Google Scholar 

  • Hsieh J (1999) Three-dimensional artifact induced by projection weighting and misalignment. IEEE Trans Med Imaging 18(4):364-368

    Article  CAS  PubMed  Google Scholar 

  • Hsieh J, Molthen RC, Dawson CA, Johnson RH (2000) An iterative approach to the beam harden-ing correction in cone beam CT. Med Phys 27(1):23-29

    Article  CAS  PubMed  Google Scholar 

  • Hsieh J, Chao E, Thibault J, Grekowicz B, Horst A, McOlash S, Myers TJ (2004) A novel recon-struction algorithm to extend the CT scan field-of-view. Med Phys 31(9):2385-2391

    Article  CAS  PubMed  Google Scholar 

  • IEEE (2004) Special issue on molecular imaging. IEEE Trans Medi Imaging 24(7)

    Google Scholar 

  • Imamura K, Fujii M (1981) Empirical beam hardening correction in the measurement of vertebral bone mineral content by computed tomography. Radiology 138(1):223-226

    CAS  PubMed  Google Scholar 

  • Jackson DF, Hawkes DJ (1983) Energy dependence in the spectral factor approach to computed tomography. Phys Med Biol 28(3):289-293

    Article  CAS  PubMed  Google Scholar 

  • Johns PC, Yaffe M (1982) Scattered radiation in fan beam imaging systems. Med Phys 9(2): 231-239

    Article  CAS  PubMed  Google Scholar 

  • Joseph PM, Spital RD (1978) A method for correcting bone induced artifacts in computed tomog-raphy scanners. J Comput Assist Tomogr 2(1):100-108

    Article  CAS  PubMed  Google Scholar 

  • Joseph PM, Spital RD (1982) The effects of scatter in X-ray computed tomography. Med Phys 9(4):464-472

    Article  CAS  PubMed  Google Scholar 

  • Kachelrieß M, Kalender WA (1998) Electrocardiogram-correlated image reconstruction from sub-second spiral CT scans of the heart. Med Phys 25(12):2417-2431

    Article  PubMed  Google Scholar 

  • Kachelrieß M, Kalender WA (2000a) Computertomograph mit reduzierter Dosisbelastung bzw. reduziertem Bildpunktrauschen. Deutsches Patent- und Markenamt. Patent Specification DE 19853143

    Google Scholar 

  • Kachelrieß M, Kalender WA (2005b) Presampling, algorithm factors, and noise: considerations for CT in particular and for medical imaging in general. Med Phys 32(5):1321-1334

    Article  Google Scholar 

  • Kachelrieß M, Kalender WA (2005c) Optimizing detector size in X-ray CT imaging. In: Proceed-ings of the ICMP and the BMT 2005, Nuremberg. Schiele & Schön, Berlin, pp 1160-1161

    Google Scholar 

  • Kachelrieß M, Ulzheimer S, Kalender WA (2000) ECG-correlated image reconstruction from sub-second multi-slice spiral CT scans of the heart. Med. Phys 27(8):1881-1902

    Article  PubMed  Google Scholar 

  • Kachelrieß M, Watzke O, Kalender WA (2001) Generalized multi-dimensional adaptive filter-ing for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28(4): 475-490

    Article  PubMed  Google Scholar 

  • Kachelrieß M, Sennst D-A, Maxlmoser W, Kalender WA (2002) Kymogram detection and kymogram-correlated image reconstruction from sub-second spiral computed tomography scans of the heart. Med Phys 29(7):1489-1503

    Article  PubMed  Google Scholar 

  • Kachelrieß M, Berkus T, Kalender WA (2005) Quality of statistical reconstruction in medical CT. Records of the 2003 IEEE Medical Imaging Conference. M10-325 (April)

    Google Scholar 

  • Kalender WA (2005) Computed tomography. Fundamentals, system technology, image quality, applications, 2nd edn. Publicis, Erlangen

    Google Scholar 

  • Kalender WA, Hebel R, Ebersberger J (1987) Reduction of CT artifacts caused by metallic im-plants. Radiology 164:576-577

    CAS  PubMed  Google Scholar 

  • Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breathhold technique, continuous transport, and continuous scanner rotation. Radiology 176(1):181-183

    CAS  PubMed  Google Scholar 

  • Kalender WA, Durkee B, Langner O, Stepina E, Karolczak M (2005) Comparative evaluation: acceptance testing and constancy testing for micro-CT scanners. In: Proceedings of the ICMP and the BMT 2005, Nuremberg. Schiele & Sch ön, Berlin, pp 1192-1193

    Google Scholar 

  • Karolczak M, Kachelrieß M, Ott O, Engelke K, Kalender WA (2005) A high-speed micro-CT scanner with rotating gantry for in-vivo animal scanning. In: Proceedings of the ICMP and the BMT 2005, Nuremberg. Schiele & Sch ön, Berlin, pp 756-757

    Google Scholar 

  • Kijewski PK, Bjarngard BE (1978) Correction for beam hardening in computed tomography. Med Phys 5(3):209-214

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthi G, Stantz KM, Steinmetz R, Gattone VH, Cao M, Hutchins GD, Liang Y (2005) Functional imaging in small animals using X-ray computed tomography—study of physiologic measurement reproducibility. IEEE Trans Med Imaging 24(7):832-843

    Article  PubMed  Google Scholar 

  • Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomogra-phy. J Comput Assist Tomogr 8(2):306-316

    CAS  PubMed  Google Scholar 

  • Lange K, Fessler JA (1995) Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Trans Med Imaging 4(10):1430-1438

    CAS  Google Scholar 

  • Marquadt D (1963) An algorithm for least-squares estimation of nonlinear parameters. Soc Indust Appl Math 11:431-441

    Article  Google Scholar 

  • McDavid WD, Waggener RG, Payne WH, Dennis MJ (1975) Spectral effects on three-dimensional reconstruction from rays. Med Phys 2(6):321-324

    Article  CAS  PubMed  Google Scholar 

  • McDavid WD, Waggener RG, Payne WH, Dennis MJ (1977) Correction for spectral artifacts in cross-sectional reconstruction from X-rays. Med Phys 4(1):54-57

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin R, Rayan M, Heuston P, McCoy C, Masterson J (1991) Quantitative analysis of CT brain images: a statistical model incorporating partial volume and beam hardening effects. Br J Radiol 65:425-430

    Article  Google Scholar 

  • Meagher J, Mote C, Skinner H (1990) CT image correction for beam hardening using simulated projection data. IEEE Trans Nuclear Sci 37(4):1520-1524

    Article  CAS  Google Scholar 

  • Moseley DJ, Siewerdsen JH, Jaffray DA (2005) High-contrast object localization and removal in cone-beam CT. In: Flynn MJ (ed) Medical imaging 2005. Physics of medical imaging. Proc SPIE 5745:40-50

    Google Scholar 

  • Nalcioglu O, Lou RY (1979) Post-reconstruction method for beam hardening in computerised tomography. Phys Med Biol 24(2):330-340

    Article  CAS  PubMed  Google Scholar 

  • Ning R, Tang X, Conover D (2004) X-ray scatter correction algorithm for cone beam CT imaging. Med Phys 31(5):1195-1202

    Article  PubMed  Google Scholar 

  • Noo F, Clackdoyle R, Mennessier C, White TA, Roney TJ (2000) Analytic method based on identi-fication of ellipse parameters for scanner calibration in cone-beam tomography. Phys Med Biol 45 (11):3489-3508

    Article  CAS  PubMed  Google Scholar 

  • Ohnesorge B, Flohr T, Klingenbeck-Regn K (1999) Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur Radiol 9(3):563-569

    Article  CAS  PubMed  Google Scholar 

  • Ohnesorge B, Flohr T, Schwarz K, Heiken JP, Bae KT (2000) Efficient correction for CT image artifacts caused by objects extending outside the scan field of view. Med Phys 27(1):39-46

    Article  CAS  PubMed  Google Scholar 

  • Olson EA, Han K, Pisano DJ (1981) CT reprojection polychromacity correction for three attenua-tors. IEEE Trans Nuclear Sci 28(4):3628-3640

    Article  Google Scholar 

  • Rao PS, Alfidi RJ (1981) The environmental density artifact: a beam-hardening effect in computed tomography. Radiology 141(1):223-227

    CAS  PubMed  Google Scholar 

  • Reed I, Truong T, Kwoh Y, Chang C (1980) X-ray reconstructionof the spinal cord, using bone suppression. IEEE Trans Biomed Eng BME-27(6):293-298

    Article  Google Scholar 

  • Riess T (2002) Beitr äge zur Entwicklung von Fl ächendetektoren in der R öntgen-Computertomographie. Berichte aus dem Institut f ür Medizinische Physik. Bd 9. Shaker, Aachen

    Google Scholar 

  • Robertson DD Jr, Huang HK (1986) Quantitative bone measurements using X-ray computed to-mography with second-order correction. Med Phys 13(4):474-479

    Article  PubMed  Google Scholar 

  • Rougee A, Picard C, Ponchut C, Trousset Y (1993a) Geometrical calibration of X-ray imaging chains for three-dimensional reconstruction. Comput Med Imaging Graph 17(4-5):295-300

    Article  CAS  Google Scholar 

  • Rougee A, Picard C, Trousset Y, Ponchut C (1993b) Geometrical calibration of 3D X-ray imag-ing. In: Kim Y (ed) Medical imaging 1993: image capture, formatting and display. Proc SPIE 1897:161-169

    Google Scholar 

  • Ruegsegger P, Hangartner T, Keller HU, Hinderling T (1978) Standardization of computed tomog-raphy images by means of a material-selective beam hardening correction. J Comput Assist Tomogr 2(2):184-188

    Article  CAS  PubMed  Google Scholar 

  • R ührnschopf EP, Kalender WA (1981) Artefakte durch nichtlineare Teilvolumen und Aufh ärtung-seffekte bei der Computertomographie. electromedica 49:96-105

    Google Scholar 

  • Ruth C, Joseph PM (1995) A comparison of beam-hardening artifacts in X-ray computerized to-mography with gadolinium and iodine contrast agents. Med Phys 22(12):1977-1982

    Article  CAS  PubMed  Google Scholar 

  • Schmidt B, Kalender WA (2002) A fast voxel-based Monte Carlo method for scanner- and patient-specific dose calculations in computed tomography. Physica Medica XVIII(2):43-53

    Google Scholar 

  • Seibert JA, Boone JM (1988) X-ray scatter removal by deconvolution. Med Phys 15(4):567-575

    Article  CAS  PubMed  Google Scholar 

  • Sekihara K, Kohno H, Yamamoto S (1982) Theoretical prediction of X-ray CT image quality using contrast-detail diagrams. IEEE Trans Nuclear Sci NS-26(6):2115-2121

    Article  Google Scholar 

  • Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS-21:21-43

    Google Scholar 

  • Siewerdsen JH, Jaffray DA (2001) Cone-beam computed tomography with a flat-panel imager: magnitude and effects of X-ray scatter. Med Phys 28(2):220-231

    Article  CAS  PubMed  Google Scholar 

  • Sijbers J, Postnov A (2004) Reduction of ring artefacts in high resolution micro-CT reconstruc-tions. Phys Med Biol 49(14):247-253

    Article  Google Scholar 

  • Sourbelle K, Kachelrieß M, Karolczak M, Kalender WA (2004) Hybrid cupping correction (HCC) for quantitative cone-beam CT. In: RSNA Scientific Assembly and Annual Meeting Program, p 293

    Google Scholar 

  • Sourbelle K, Kachelriess M, Kalender WA (2005) Reconstruction from truncated projections in CT using adaptive detruncation. Eur Radiol 15(5):1008-1014

    Article  CAS  PubMed  Google Scholar 

  • Sourbelle K, Kachelrieß M, Kalender WA (2006) Empirical water precorrection for cone-beam computed tomography. IEEE Medical Imaging ConferenceRecord, 2006 (in press)

    Google Scholar 

  • Stevens GM, Saunders R, Pelc NJ (2001) Alignment of a volumetric tomography system. Med Phys 28(7):1472-1481

    Article  CAS  PubMed  Google Scholar 

  • Stonestrom J, Alvarez R, Macovski A (1981) A framework for spectral artifact corrections in X-ray CT. IEEE Trans Biomed Eng BME-28(2):128-141

    Article  Google Scholar 

  • von Smekal L, Kachelrieß M, Stepina E, Kalender WA (2004) Geometric misalignment and cali-bration in cone-beam tomography. Med Phys 31(12):3242-3266

    Article  PubMed  Google Scholar 

  • Wang G, Vannier MW, Cheng PC (1999) Iterative X-ray cone-beam tomography for metal artifact reduction and local region reconstruction. Microsc Microanal 5(1):58-65

    Article  CAS  PubMed  Google Scholar 

  • Watzke O, Kalender WA (2004) A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol 14(5):849-856

    PubMed  Google Scholar 

  • Wiesent K, Barth K, Navab N, Brunner T, Seissler W (1999) Enhanced 3-D-reconstruction algo-rithm for C-arm systems based interventional procedures. Proc 1999 Int Meeting on Fully 3D Image Reconstruction, pp 167-170

    Google Scholar 

  • Wiesent K, Barth K, Navab N, Durlak P, Brunner T, Schuetz O, Seissler W (2000) Enhanced 3-D-reconstruction algorithm for C-arm systems suitable for interventional procedures. IEEE Trans Med Imaging 19(5):391-403

    Article  CAS  PubMed  Google Scholar 

  • Young SW, Muller HH, Marshall WH (1983) Computed tomography: beam hardening and envi-ronmental density artifact. Radiology 148(1):279-283

    CAS  PubMed  Google Scholar 

  • Zatz LM, Alvarez RE (1977) An inaccuracy in computed tomography: the energy dependence of CT values. Radiology 124(1):91-97

    CAS  PubMed  Google Scholar 

  • Zhao S, Robertson DD, Wang G, Whiting B, Bae KT (2000) X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses. IEEE Trans Med Imaging 19 (12):1238-1247

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kachelrieß, M. (2008). Micro-CT. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging I. Handbook of Experimental Pharmacology, vol 185/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72718-7_2

Download citation

Publish with us

Policies and ethics