Skip to main content

Robustness and Robust Design of MPC for Nonlinear Discrete-Time Systems

  • Chapter

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 358))

Abstract

In view of the widespread success of Model Predictive Control (MPC), in recent years attention has been paid to its robustness characteristics, either by examining the robustness properties inherent to stabilizing MPC algorithms, or by developing new MPC methods with enhanced robustness properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.S. Chellaboina and W. M. Haddad. Stability margins of discrete-time nonlinear-nonquadratic optimal regulators. In IEEE CDC, pages 1786–1791, 1998.

    Google Scholar 

  2. H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 34:1205–1217, 1998.

    Article  MATH  Google Scholar 

  3. H. Chen, C. W. Scherer, and F. Allgöwer. A game theoretical approach to nonlin-ear robust receding horizon control of constrained systems. In American Control Conference’ 97, 1997.

    Google Scholar 

  4. L. Chisci, J. A. Rossiter, and G. Zappa. Systems with persistent disturbances: Predictive control with restricted constraints. Automatica, 37:1019–1028, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. De Nicolao, L. Magni, and R. Scattolini. On the robustness of receding-horizon control with terminal constraints. IEEE Trans. Automatic Control, 41:451–453, 1996.

    Article  MATH  Google Scholar 

  6. G. De Nicolao, L. Magni, and R. Scattolini. Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Trans, on Automatic Control, AC–43:1030–1036, 1998.

    Article  Google Scholar 

  7. F. A. C. C. Fontes. A general framework to design stabilizing nonlinear model predictive controllers. Systems & Control Letters, 42:127–143, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. A. C. C. Fontes and L. Magni. Min-max model predictive control of nonlin-ear systems using discontinuous feedbacks. IEEE Trans, on Automatic Control, 48:1750–1755, 2003.

    Article  MathSciNet  Google Scholar 

  9. F. A. C. C. Fontes, L. Magni, and E. Gyurkovics. Sampled-data model pre-dictive control for nonlinear time-varying systems: Stability and robustness. In International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control, Freudenstadt-Lauterbad, Germany August 26–30., 2005.

    Google Scholar 

  10. J.C. Geromel and J. J. Da Cruz. On the robustness of optimal regulators for nonlinear discrete-time systems. IEEE Trans. on Automatic Control, AC–32:703–710, 1987.

    Article  Google Scholar 

  11. E. G. Gilbert and K. T. Tan. Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Transaction on Automatic Control, AC–36:1008–1020, 1991.

    Article  MathSciNet  Google Scholar 

  12. S. T. Glad. Robustness of nonlinear state feedback-a survey. Automatica, 23:425–435, 1987.

    Article  MATH  Google Scholar 

  13. G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel. Examples when nonlinear model predictive control is nonrobust. Automatica, 40:1729–1738, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel. Model predictive control: For want of a local control Lyapunov function, all is not lost. IEEE Transactions on Automatic Control, 50:546–558, 2005.

    Article  MathSciNet  Google Scholar 

  15. E. Gyurkovics. Receding horizon H∞ control for nonlinear discrete-time systems. IEE Proceedings—Control Theory and Applications, 149:540–546, 2002.

    Article  Google Scholar 

  16. E. Gyurkovics and A. M. Elaiw. Stabilization of sampled-data nonlinear sys-tems by receding horizon contyrol via discrete-time approximations. Automatica, 40:2017–2028, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. Gyurkovics and T. Takacs. Quadratic stabilisation with h∞-norm bound of non-linear discrete-time uncertain systems with bounded control. Systems & Con-trol Letters, 50:277–289, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Hu and A. Linnemann. Toward infinite-horizon optimality in nonlinear model predictive control. IEEE Trans, on Automatic Control, 47:679–682, 2002.

    Article  MathSciNet  Google Scholar 

  19. A. Jadbabaie and J. Häuser. Unconstrained receding-horizon control of nonlinear systems. IEEE Trans, on Automatic Control, 5:776–783, 2001.

    Article  Google Scholar 

  20. A. Jadbabaie and J. Häuser. On the stability of receding horizon control with a general terminal cost. IEEE Transactions on Automatic Control, 50:674–678, 2005.

    Article  Google Scholar 

  21. Z.-P. Jiang and Y. Wang. Input-to-state stability for discrete-time nonlinear systems. Automatica, 37:857–869, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  22. H. K. Khalil. Nonlinear systems. Prentice Hall, 1996.

    Google Scholar 

  23. M. Lazar, W. Heemels, A. Bemporad, and S. Weiland. On the stability and robustness of non-smooth nonlinear model predictive control. In Int. Workshop on Assessment and Future Directions of NMPC, Freudenstadt-Lauterbad, Germany, pages 327–334, 2005. Also submitted for Springer Book.

    Google Scholar 

  24. D. Limon, T. Alamo, and E. F. Camacho. Input-to-state stable MPC for con-strained discrete-time nonlinear systems with bounded additive uncertainties. In IEEE CDC, pages 4619–4624, 2002.

    Google Scholar 

  25. D. Limón, T. Alamo, and E. F. Camacho. Stability analysis of systems with bounded additive uncertainties based on invariant sets: Stability and feasibility of MPC. In ACC02, pages 364–369, 2002.

    Google Scholar 

  26. D. Limon, T. Alamo, and E. F. Camacho. Stable constrained MPC without terminal constraint. In American Control Conference, pages 4893–4898, 2003.

    Google Scholar 

  27. D. Limon, T. Alamo, and E. F. Camacho. Robust stability of min-max MPC controllers for nonlinear systems with bounded uncertainties. In MTNS, 2004.

    Google Scholar 

  28. L. Magni, G. De Nicolao, L. Magnani, and R. Scattolini. A stabilizing model-based predictive control for nonlinear systems. Automatica, 37:1351–1362, 2001.

    Article  MATH  Google Scholar 

  29. L. Magni, G. De Nicoiao, R. Scattolini, and F. Allgöwer. Robust model predictive control of nonlinear discrete-time systems. International Journal of Robust and Nonlinear Control, 13:229–246, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Magni, H. Nijmeijer, and A. J. van der Schaft. A receding-horizon approach to the nonlinear H∞ control problem. Automatica, 37:429–435, 2001.

    Article  MATH  Google Scholar 

  31. L. Magni, D. M. Raimondo, and R. Scattolini. Regional input-to-state stability for nonlinear model predictive control. IEEE Transactions on Automatic Control, AC51, pp. 1548–1553, 2006.

    Article  MathSciNet  Google Scholar 

  32. L. Magniand R. Scattolini. Model predictive control of continuous-time nonlinear systems with piecewise constant control. IEEE Trans, on Automatic Control, 49:900–906, 2004.

    Article  Google Scholar 

  33. L. Magniand R. Scattolini. Control design for nonlinear systems: Trading rou-bustness and performance with the model predictive control approach. IEE Proceedings—Control Theory & Application, pages 333–339, 2005.

    Google Scholar 

  34. L. Magniand R. Sepulchre. Stability margins of nonlinear receding horizon control via inverse optimality. Systems & Control Letters, 32:241–245, 1997.

    Article  MathSciNet  Google Scholar 

  35. D. Q. Mayne. Nonlinear model predictive control: Challenges and opportunities. In F. Allgower and A. Zheng, editors, Nonlinear Model Predictive Control, pages 23–44. Progress in Systems and Control Theory, Birkhauser Verlag, 2000.

    Google Scholar 

  36. D. Q. Mayne. Control of constrained dynamic systems. European Journal of Control, 7:87–99, 2001.

    Article  Google Scholar 

  37. D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model predictive control: Stability and optimality. Automatica, 36:789–814, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  38. E. S. Meadows, M. A. Henson, J. W. Eaton, and J. B. Rawlings. Receding horizon control and discontinuous state feedback stabilization. Int. J. Control, 62:1217–1229, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  39. H. Michalskaand D. Q. Mayne. Robust receding horizon control of constrained nonlinear systems. IEEE Trans, on Automatic Control, 38:1623–1633, 1993.

    Article  Google Scholar 

  40. T. Parisini and R. Zoppoli. A receding-horizon regulator for nonlinear systems and a neural approximation. Automatica, 31:1443–1451, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  41. P. O. M. Scokaertand D. Q. Mayne. Min-max feedback model predictive control for constrained linear systems. IEEE Trans. on Automatic Control, 43:1136–1142, 1998.

    Article  Google Scholar 

  42. P. O. M. Scokaert, J. B. Rawlings, and E. S. Meadows. Discrete-time stability with perturbations: Application to model predictive control. Automatica, 33:463–470, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  43. R. Sepulchre, M. Jankovic, and P. V. Kokotovic. Constructive Nonlinear Control. Springer-Verlag, 1996.

    Google Scholar 

  44. G. Tadmor. Receding horizon revisited: An easy way to robustly stabilize an LTV system. Systems & Control Letters, 18:285–294, 1992.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Magni, L., Scattolini, R. (2007). Robustness and Robust Design of MPC for Nonlinear Discrete-Time Systems. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72699-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72699-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72698-2

  • Online ISBN: 978-3-540-72699-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics