Skip to main content

Sulfur and Light? History and “Thiology” of the Phototrophic Sulfur Bacteria

  • Conference paper

This chapter describes how our present knowledge of sulfur metabolism of phototrophic sulfur bacteria accumulated through several major steps of experimental progress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acosta M, Beard S, Ponce J, Vera M, Mobarec JC, Jerez CA (2005) Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins. OMICS 9:13–28.

    Article  CAS  PubMed  Google Scholar 

  • Das A, Mishra AK, Roy P (1993) Inhibition of thiosulfate and tetrathionate oxidation by ferrous iron in Thiobacillus ferrooxidans. FEMS Microbiol Lett 112:67–72.

    Article  CAS  Google Scholar 

  • De Jong GAH, Hazeu W, Bos P, Kuenen G (1997) Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans. Microbiology 143:499–504.

    Article  Google Scholar 

  • Espejo RT, Romero P (1987) Growth of Thiobacillus ferrooxidans on elemental sulfur. Appl Environ Microbiol 1907–1912.

    Google Scholar 

  • Friedrich CG (1998) Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39:235–289.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259.

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 97:9390–9395.

    Article  CAS  PubMed  Google Scholar 

  • Harrison AP (1984) The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 38:265–92.

    Article  CAS  PubMed  Google Scholar 

  • J. Craig Ventner Institute (2007) The new JCVI. http://www.tigr.org. Cited 16 Jan 2007.

  • Kelly DP, Shergill JK, Lu W-P, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71: 95–107.

    Article  CAS  PubMed  Google Scholar 

  • Lundgren DG (1980) Ore leaching by bacteria. Annu Rev Microbiol 34:263–283.

    Article  CAS  PubMed  Google Scholar 

  • Müller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM, Kletzin A (2004) Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol Microbiol 53:1147–1160.

    Article  PubMed  CAS  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez P, Toledo H, Guiliani N, Jerez CA (2002) An exported rhodanese-like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds. Appl Environ Microbiol 68:1837–1845.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez P, Guiliani N, Valenzuela L, Beard S, Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70:4491–4498.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13.

    Article  PubMed  CAS  Google Scholar 

  • Rohwerder T, Sand W (2003) The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology149:1699–1709.

    Article  CAS  PubMed  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248.

    Article  CAS  PubMed  Google Scholar 

  • Sand W, Gehrke T, Hallmann R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in) direct attack mechanism–a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966.

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio) chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy 59:159–175.

    Article  CAS  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321.

    CAS  PubMed  Google Scholar 

  • Self WT, Grunden AM, Hasona A, Shanmugam, KT (2001) Molybdate transport. Res Microbiol 152:311–321.

    Article  CAS  PubMed  Google Scholar 

  • Silver M, Lundgren DG (1968a) Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 46:457–461.

    Article  CAS  PubMed  Google Scholar 

  • Silver M, Lundgren DG (1968b) The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 46:1215–1220.

    Article  CAS  PubMed  Google Scholar 

  • Sugio T, Mizunashi W, Inagaki K, Tano T (1987) Purification and some properties of sulfur:ferric ion oxidoreductase from Thiobacillus ferrooxidans. J. Bacteriol 169:4916–4922.

    CAS  PubMed  Google Scholar 

  • Suzuki I (1999) Oxidation of inorganic sulfur compounds: chemical and enzymatic reactions. Can J Microbiol 45:97–105.

    Article  CAS  Google Scholar 

  • Suzuki I (2001) Microbial leaching of metals from sulfide minerals. Biotechnol Adv 19:119–132.

    Article  CAS  PubMed  Google Scholar 

  • Tabita R, Silver M, Lundgren DG (1969) The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 47:1141–1145.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jerez CA (2006) Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24:197–211.

    Article  CAS  PubMed  Google Scholar 

  • Yarzabal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113–2123.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trüper, H.G. (2008). Sulfur and Light? History and “Thiology” of the Phototrophic Sulfur Bacteria. In: Dahl, C., Friedrich, C.G. (eds) Microbial Sulfur Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72682-1_8

Download citation

Publish with us

Policies and ethics