Skip to main content

First implementation results and open issues on the Poincaré-TEN data structure

  • Chapter
Advances in 3D Geoinformation Systems

Abstract

Modeling 3D geo-information has often been based on either simple extensions of 2D geo-information modeling principles without considering the additional 3D aspects related to correctness of representations or on 3D CAD based solutions applied to geo-information. Our approach is based from the scratch on modeling 3D geo-information based on the mathematically well-defined Poincaré-TEN data structure. The feasibility of this approach still has to be verified in practice. In this paper, the first experiences of loading a reasonable sized data set, comprised of about 1,800 buildings represented by nearly 170,000 tetrahedrons (including the ‘air’ and ‘earth’), are discussed. Though the Poincaré-TEN data structure is feasible, the experience gained during the implementation raises new research topics: physical storage in one (tetrahedron only) or two tables (tetrahedron and node), effective clustering and indexing improvements, more compact representations without losing too much performance, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Penninga, F., van Oosterom, P.: A Compact Topological DBMS Data Structure For 3D Topography. In Fabrikant, S., Wachowicz, M., eds.: Geographic Information Science and Systems in Europe, Agile Conference 2007. Lecture Notes in Geoinformation and Cartography, Springer (2007)

    Google Scholar 

  2. Penninga, F., van Oosterom, P.: Updating Features in a TEN-based DBMS approach for 3D Topographic Data modeling. In Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F., eds.: Geographic Information Science, Fourth International Conference, GIScience 2006, Münster, Germany, September 2006, Extended Abstracts. Volume 28 of IfGI prints. (2006) 147–152

    Google Scholar 

  3. Penninga, F., van Oosterom, P., Kazar, B.M.: A TEN-based DBMS approach for 3D Topographic Data modeling. In Riedl, A., Kainz, W., Elmes, G., eds.: Progress in Spatial Data Handling, 12th International Symposium on spatial Data Handling, Springer (2006) 581–598

    Google Scholar 

  4. Zlatanova, S., Abdul Rahman, A., Pilouk, M.: 3D GIS: Current Status and Perspectives. In: Proceedings of Joint Conference on Geo-Spatial Theory, Processing and Applications, Ottawa, Canada. (2002)

    Google Scholar 

  5. Carlson, E.: Three-dimensional conceptual modeling of subsurface structures. In: Auto-Carto 8. (1987) 336–345

    Google Scholar 

  6. Frank, A.U., Kuhn, W.: Cell Graphs: A provable Correct Method for the Storage of Geometry. In: Proceedings of the 2nd International Symposium on Spatial Data Handling, Seattle, Washington. (1986)

    Google Scholar 

  7. Pigot, S.: A Topological Model for a 3D Spatial Information System. In: Proceedings of the 5th International Symposium on Spatial Data Handling. (1992) 344–360

    Google Scholar 

  8. Pigot, S.: A topological model for a 3-dimensional Spatial Information System. PhD thesis, University of Tasmania, Australia (1995)

    Google Scholar 

  9. Pilouk, M.: Integrated modeling for 3D GIS. PhD thesis, ITC Enschede, Netherlands (1996)

    Google Scholar 

  10. Egenhofer, M., Frank, A., Jackson, J.: A Topological Data Model for Spatial Databases. In: Proceedings of First Symposium SSD’89. (1989) 271–286

    Google Scholar 

  11. Egenhofer, M., Frank, A.: PANDA: An Extensible Dbms Supporting Object-Oriented Software Techniques. In: Datenbanksysteme in Büro, Technik und Wissenschaft. Proceedings of GI/SI Fachtagung, Zürich, 1989. Informatik Fachberichten, Springer-Verlag (1989) 74–79

    Google Scholar 

  12. Zlatanova, S.: 3D GIS for urban development. PhD thesis, Graz University of Technology (2000)

    Google Scholar 

  13. Stoter, J.: 3D Cadastre. PhD thesis, Delft University of Technology (2004)

    Google Scholar 

  14. Penninga, F.: 3D Topographic Data modeling: Why Rigidity Is Preferable to Pragmatism. In Cohn, A.G., Mark, D.M., eds.: Spatial Information Theory, Cosit’05. Volume 3693 of Lecture Notes on Computer Science., Springer (2005) 409–425

    Google Scholar 

  15. ISO/TC211: Geographic information-reference model. Technical Report ISO 19101, International Organization for Standardization (2005)

    Google Scholar 

  16. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002) Available at http://www.math.cornell.edu/hatcher.

  17. Poincaré, H.: Complément á l’Analysis Situs. Rendiconti del Circolo Matematico di Palermo 13 (1899) 285–343

    Google Scholar 

  18. http://tetgen.berlios.de/: (2007)

  19. Miller, G.L., Talmor, D., Teng, S.H., Walkington, N., Wang, H.: Control Volume Meshes using Sphere Packing: Generation, Refinement and Coarsening. In: 5th International Meshing Roundtable, Sandia National Laboratories (1996) 47–62

    Google Scholar 

  20. http://mathworld.wolfram.com/PlanarStraightLineGraph.html: (2007)

  21. Si, H.: TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator. User’s Manual. Technical report, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany (2006) Available at http://tetgen.berlios.de/files/tetgenmanual.pdf.

    Google Scholar 

  22. Colins, K.D.: Cayley-Menger Determinant. From Mathworld — A Wolfram Web Resource. http://mathworld.wolfram.com/Cayley-MengerDeterminant.html (2003)

  23. van Oosterom, P., Vijlbrief, T.: The Spatial Location Code. In Kraak, M.J., Molenaar, M., eds.: Advances in GIS research II; proceedings of the seventh International Symposium on Spatial Data Handling-SDH’96, Taylor and Francis (1996)

    Google Scholar 

  24. Oude Elberink, S., Vosselman, G.: Adding the Third Dimension to a Topographic Database Using Airborne Laser Scanner Data. In: Photogrammetric Computer Vision 2006. IAPRS, Bonn, Germany. (2006)

    Google Scholar 

  25. Penninga, F., van Oosterom, P.: Editing Features in a TEN-based DBMS approach for 3D Topographic Data modeling. Technical Report GISt Report No. 43, Delft University of Technology (2006) Available at http://www.gdmc.nl/publications/reports/GISt43.pdf.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Penninga, F., van Oosterom, P. (2008). First implementation results and open issues on the Poincaré-TEN data structure. In: van Oosterom, P., Zlatanova, S., Penninga, F., Fendel, E.M. (eds) Advances in 3D Geoinformation Systems. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72135-2_11

Download citation

Publish with us

Policies and ethics