Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 98))

  • 1683 Accesses

We investigate the possibility of preparing left-handed materials in metallic magnetic granular composites. Based on the effective medium approximation, we show that by incorporating metallic magnetic nanoparticles into an appropriate insulating matrix and controlling the directions of magnetization of metallic magnetic components and their volume fraction, it may be possible to prepare a composite medium which is left handed for electromagnetic waves propagating in some special direction and polarization in a frequency region near the ferromagnetic resonance frequency. This composite may be easier to make on an industrial scale. In addition, its physical properties may be easily tuned by rotating the magnetization locally. The anisotropic characteristics of this material is discussed. The exactly solvable example of the multilayer system is used to illustrate the results of the effective medium calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett.76, 4773(1996).

    Article  ADS  Google Scholar 

  2. R.H. Ritchie, A. Howie, Philos. Mag. A 44, 931 (1981).

    Article  ADS  Google Scholar 

  3. T.L. Ferrell, P.M. Echenique, Phys. Rev. Lett. 55, 1526 (1985).

    Article  ADS  Google Scholar 

  4. A.W. Howie, C.A. Walsh, Microsc. Microanal. Microstruct. 2, 171 (1991).

    Article  Google Scholar 

  5. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

    Article  ADS  Google Scholar 

  6. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemet-Nasser, S. Schultz, Phys. Rev. Lett. 67, 3578 (2000).

    Google Scholar 

  7. S.T. Chui, L.B. Hu, Phys. Rev. B 65, 144407 (2002).

    Article  ADS  Google Scholar 

  8. R. Burridge, S. Childress, G. papanicolaou (eds.), Macroscopic Properties of Disordered Media (Springer, Berlin Heidelberg New York, 1982).

    Book  MATH  Google Scholar 

  9. C.P. Slichter, Principle of Magnetic Resonance (Springer, Berlin Heidelberg New York, 1978).

    Google Scholar 

  10. 10. J.C. Garland, D.B. Tanner (eds.), Electrical Transport and Optical Properties of Inhomogeneous Media (American Institute of Physics, New York, 1978).

    Google Scholar 

  11. D. Stroud, F.P. Pan, Phys. Rev. B 20, 455 (1979).

    Article  ADS  Google Scholar 

  12. P. Sheng, Phys. Rev. Lett 45, 60 (1980).

    Article  ADS  Google Scholar 

  13. W. Lamb, D.M. Wood, N.W. Ashcroft, Phys. Rev. B 21, 2248 (1980).

    Article  ADS  Google Scholar 

  14. H.C. Van de Hulst, Light Scattering by Small Particles, chap.9(Dover, New York, 1981); J.D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

    Google Scholar 

  15. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, chap. 11 (Pergamon, Oxford, 1960).

    MATH  Google Scholar 

  16. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  ADS  Google Scholar 

  17. D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).

    Article  ADS  Google Scholar 

  18. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999), p. 837.

    Google Scholar 

  19. P. Sheng, R.S. Stepleman, P.N. Sanda, Phys. Rev. B 26, 2907 (1982).

    Article  ADS  Google Scholar 

  20. S.T. Chui, M.Y. Zhou, P. Sheng, Z. Chen, J. Appl. Phys. 69, 3366 (1989) .

    Article  ADS  Google Scholar 

  21. Define a matrix U = T (pi , di , Ti ) T (pm , dm , Tm ). One can show by direct computation that the determinant of the matrix U is 1. The eigenvalue equation det(U − λ) = 0 reduces to a quadratic equation λ2 − 2zλ + 1 = 0, where z is the right-hand side of Eq. (1). The solution of this equation is λ = z ± (z2 − 1)0.5 . If one calls z = cos kl, then λ = exp(±ikl), as claimed.

    Google Scholar 

  22. J.D. Jackson, Classical Electrodynamics, section6.9,3rd edn.(Wiley, New York, 1999).

    MATH  Google Scholar 

  23. L.B. Hu, S.T. Chui, Phys. Rev. B 66, 085108 (2002); L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. B 68, 115424 (2003).

    Article  ADS  Google Scholar 

  24. R.X. Wu, X.K. Zhang, Z.F. Lin, S.T. Chui, J.Q. Xiao, J. Magn. Magn. Mater. 271(2-3), 180-183 (2004).

    Article  ADS  Google Scholar 

  25. S.T. Chui, L.B. Hu, Z.F. Lin, Phys. Lett. A 319, 85 (2003).

    Article  ADS  Google Scholar 

  26. This result is obtained from the condition that the matrix becomes diagonal and the trace of the submatrix is invariant under rotation.

    Google Scholar 

  27. M.A. Ordal et al., Appl. Opt. 22, 1099 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chui, ST., Hu, L.B., Lin, Z., Zhou, L. (2007). “Left-Handed” Magnetic Granular Composites. In: Krowne, C.M., Zhang, Y. (eds) Physics of Negative Refraction and Negative Index Materials. Springer Series in Materials Science, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72132-1_3

Download citation

Publish with us

Policies and ethics