Skip to main content

Chorein is the protein encoded by gene VPS13A which is altered in chorea-acanthocytosis (ChAc). It belongs to the VPS13 protein family which, in mammals, has three other members: VPS13B, VPS13C and VPS13D. These proteins are similar to Vps13p, a yeast protein shown to be involved in intra-cellular trafficking of a number of transmembrane proteins. Chorein and its homologous human proteins lack domains or motifs of known function. This, together with their large size, makes the functional characterisation of these proteins a difficult task. Nevertheless, we have undertaken this task following a molecular and cellular biology approach. We have cloned the cDNA for the human VPS13 genes and used them for transfection of mammalian cell lines. We present here an overview of the results obtained. We also analyse the data available for similar proteins and the information provided by mutational screening in ChAc patients in the context of the implications in protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baralle D, Baralle M (2005) Splicing in action: assessing disease causing sequence changes. J Med Genet 42:737–748.

    Article  CAS  PubMed  Google Scholar 

  2. Brickner JH, Fuller RS (1997) SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals. J Cell Biol 139:23–36.

    Article  CAS  PubMed  Google Scholar 

  3. Buratti E, Baralle M, Baralle FE (2006) Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res 34:3494–3510.

    Article  CAS  PubMed  Google Scholar 

  4. Caceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18:186–193.

    Article  CAS  PubMed  Google Scholar 

  5. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298.

    Article  CAS  PubMed  Google Scholar 

  6. Coates PJ, Hall PA (2003) The yeast two-hybrid system for identifying protein-protein interactions. J Pathol 199:4–7.

    Article  CAS  PubMed  Google Scholar 

  7. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662.

    Article  PubMed  CAS  Google Scholar 

  8. Danek A, Walker RH (2005) Neuroacanthocytosis. Curr Opin Neurol 18:386–392.

    Article  PubMed  Google Scholar 

  9. Danek A, Jung HH, Melone MA, Rampoldi L, Broccoli V, Walker RH (2005) Neuroacanthocytosis: new developments in a neglected group of dementing disorders. J Neurol Sci 229–230:171–186.

    Article  PubMed  Google Scholar 

  10. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12.

    Article  Google Scholar 

  11. Dobson-Stone C (2004) Molecular genetics of chorea-acanthocytosis. Thesis, University of Oxford, Oxford.

    Google Scholar 

  12. Dobson-Stone C, Danek A, Rampoldi L, Hardie RJ, Chalmers RM, Wood NW, Bohlega S, Dotti MT, Federico A, Shizuka M, Tanaka M, Watanabe M, Ikeda Y, Brin M, Goldfarb LG, Karp BI, Mohiddin S, Fananapazir L, Storch A, Fryer AE, Maddison P, Sibon I, Trevisol-Bittencourt PC, Singer C, Caballero IR, Aasly JO, Schmierer K, Dengler R, Hiersemenzel LP, Zeviani M, Meiner V, Lossos A, Johnson S, Mercado FC, Sorrentino G, Dupre N, Rouleau GA, Volkmann J, Arpa J, Lees A, Geraud G, Chouinard S, Nemeth A, Monaco AP (2002) Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis. Eur J Hum Genet 10:773–781.

    Article  CAS  PubMed  Google Scholar 

  13. Dobson-Stone C, Rampoldi L, Monaco AP (2004) The spectrum of mutations and possible function of the CHAC gene. In: Danek A (ed) Neuroacanthocytosis syndromes. Springer, Dordrecht, pp 169–175.

    Chapter  Google Scholar 

  14. Dobson-Stone C, Velayos-Baeza A, Filippone LA, Westbury S, Storch A, Erdmann T, Wroe SJ, Leenders KL, Lang AE, Dotti MT, Federico A, Mohiddin SA, Fananapazir L, Daniels G, Danek A, Monaco AP (2004) Chorein detection for the diagnosis of chorea-acanthocytosis. Ann Neurol 56:299–302.

    Article  CAS  PubMed  Google Scholar 

  15. Dobson-Stone C, Velayos-Baeza A, Jansen A, Andermann F, Dubeau F, Robert F, Summers A, Lang AE, Chouinard S, Danek A, Andermann E, Monaco AP (2005) Identification of a VPS13A founder mutation in French Canadian families with chorea-acanthocytosis. Neurogenetics 6:151–158.

    Article  CAS  PubMed  Google Scholar 

  16. Falk MJ, Feiler HS, Neilson DE, Maxwell K, Lee JV, Segall SK, Robin NH, Wilhelmsen KC, Traskelin AL, Kolehmainen J, Lehesjoki AE, Wiznitzer M, Warman ML (2004) Cohen syndrome in the Ohio Amish. Am J Med Genet 128A:23–28.

    Article  PubMed  Google Scholar 

  17. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Mata R, Gao YS, Sztul E (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic 3:388–396.

    Article  CAS  PubMed  Google Scholar 

  19. Hennies HC, Rauch A, Seifert W, Schumi C, Moser E, Al-Taji E, Tariverdian G, Chrzanowska KH, Krajewska-Walasek M, Rajab A, Giugliani R, Neumann TE, Eckl KM, Karbasiyan M, Reis A, Horn D (2004) Allelic heterogeneity in the COH1 gene explains clinical variability in Cohen syndrome. Am J Hum Genet 75:138–145.

    Article  CAS  PubMed  Google Scholar 

  20. Ho M, Chelly J, Carter N, Danek A, Crocker P, Monaco AP (1994) Isolation of the gene for McLeod syndrome that encodes a novel membrane transport protein. Cell 77:869–880.

    Article  CAS  PubMed  Google Scholar 

  21. Kolehmainen J, Black GC, Saarinen A, Chandler K, Clayton-Smith J, Traskelin AL, Perveen R, Kivitie-Kallio S, Norio R, Warburg M, Fryns JP, de la Chapelle A, Lehesjoki AE (2003) Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet 72:1359–1369.

    Article  CAS  PubMed  Google Scholar 

  22. Kolehmainen J, Wilkinson R, Lehesjoki AE, Chandler K, Kivitie-Kallio S, Clayton-Smith J, Traskelin AL, Waris L, Saarinen A, Khan J, Gross-Tsur V, Traboulsi EI, Warburg M, Fryns JP, Norio R, Black GC, Manson FD (2004) Delineation of Cohen syndrome following a large-scale genotype-phenotype screen. Am J Hum Genet 75:122–127.

    Article  CAS  PubMed  Google Scholar 

  23. Lejeune F, Maquat LE (2005) Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 17:309–315.

    Article  CAS  PubMed  Google Scholar 

  24. Mochida GH, Rajab A, Eyaid W, Lu A, Al-Nouri D, Kosaki K, Noruzinia M, Sarda P, Ishihara J, Bodell A, Apse K, Walsh CA (2004) Broader geographical spectrum of Cohen syndrome due to COH1 mutations. J Med Genet 41:e87.

    Article  CAS  PubMed  Google Scholar 

  25. Parrish JR, Gulyas KD, Finley RL Jr (2006) Yeast two-hybrid contributions to interactome mapping. Curr Opin Biotechnol 17:387–393.

    Article  CAS  PubMed  Google Scholar 

  26. Rampoldi L, Dobson-Stone C, Rubio JP, Danek A, Chalmers RM, Wood NW, Verellen C, Ferrer X, Malandrini A, Fabrizi GM, Brown R, Vance J, Pericak-Vance M, Rudolf G, Carre S, Alonso E, Manfredi M, Nemeth AH, Monaco AP (2001) A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet 28:119–120.

    Article  CAS  PubMed  Google Scholar 

  27. Rampoldi L, Danek A, Monaco AP (2002) Clinical features and molecular bases of neuroacanthocytosis. J Mol Med 80:475–491.

    Article  CAS  PubMed  Google Scholar 

  28. Redman CM, Russo D, Lee S (1999) Kell, Kx and the McLeod syndrome. Baillieres Best Pract Res Clin Haematol 12:621–635.

    Article  CAS  PubMed  Google Scholar 

  29. Redman CM, Russo DCW, Pu JJ, Lee S (2004) The Kell blood group protein, its relation to XK and its function as an endothelin-3-converting enzyme. In: Danek A (ed) Neuroacanthocytosis syndromes. Springer, Dordrecht, pp 197–203.

    Chapter  Google Scholar 

  30. Saiki S, Sakai K, Kitagawa Y, Saiki M, Kataoka S, Hirose G (2003) Mutation in the CHAC gene in a family of autosomal dominant chorea-acanthocytosis. Neurology 61:1614–1616.

    CAS  PubMed  Google Scholar 

  31. Scamuffa N, Calvo F, Chretien M, Seidah NG, Khatib AM (2006) Proprotein convertases: lessons from knockouts. FASEB J 20:1954–1963.

    Article  CAS  PubMed  Google Scholar 

  32. Seidah NG, Chretien M (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848:45–62.

    Article  CAS  PubMed  Google Scholar 

  33. Seifert W, Holder-Espinasse M, Spranger S, Hoeltzenbein M, Rossier E, Dollfus H, Lacombe D, Verloes A, Chrzanowska KH, Maegawa GH, Chitayat D, Kotzot D, Huhle D, Meinecke P, Albrecht B, Mathijssen I, Leheup B, Raile K, Hennies HC, Horn D (2006) Mutational spectrum of COH1 and clinical heterogeneity in Cohen syndrome. J Med Genet 43:e22.

    Article  CAS  PubMed  Google Scholar 

  34. Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H (2005) Function of alternative splicing. Gene 344:1–20.

    Article  CAS  PubMed  Google Scholar 

  35. Stege JT, Laub MT, Loomis WF (1999) tip genes act in parallel pathways of early Dictyostelium development. Dev Genet 25:64–77.

    Article  CAS  PubMed  Google Scholar 

  36. Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2:31–39.

    Article  CAS  PubMed  Google Scholar 

  37. Taylor NA, Van De Ven WJ, Creemers JW (2003) Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J 17:1215–1227.

    Article  CAS  PubMed  Google Scholar 

  38. Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766.

    Article  CAS  PubMed  Google Scholar 

  39. Tomemori Y, Ichiba M, Kusumoto A, Mizuno E, Sato D, Muroya S, Nakamura M, Kawaguchi H, Yoshida H, Ueno S, Nakao K, Nakamura K, Aiba A, Katsuki M, Sano A (2005) A gene-targeted mouse model for chorea-acanthocytosis. J Neurochem 92:759–766.

    Article  CAS  PubMed  Google Scholar 

  40. Ueno S, Maruki Y, Nakamura M, Tomemori Y, Kamae K, Tanabe H, Yamashita Y, Matsuda S, Kaneko S, Sano A (2001) The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat Genet 28:121–122.

    Article  CAS  PubMed  Google Scholar 

  41. Velayos-Baeza A, Vettori A, Copley RR, Dobson-Stone C, Monaco AP (2004) Analysis of the human VPS13 gene family. Genomics 84:536–549.

    Article  CAS  PubMed  Google Scholar 

  42. Walker RH, Danek A, Dobson-Stone C, Guerrini R, Jung HH, Lafontaine AL, Rampoldi L, Tison F, Andermann E (2006) Developments in neuroacanthocytosis: expanding the spectrum of choreatic syndromes. Mov Disord 21:1794–1805.

    Article  PubMed  Google Scholar 

  43. Walker RH, Liu Q, Ichiba M, Muroya S, Nakamura M, Sano A, Kennedy CA, Sclar G (2006) Self-mutilation in chorea-acanthocytosis: manifestation of movement disorder or psychopathology? Mov Disord 21:2268–2269.

    Article  PubMed  Google Scholar 

  44. Walker RH, Jung HH, Dobson-Stone C, Rampoldi L, Sano A, Tison F, Danek A (2007) Neurologic phenotypes associated with acanthocytosis. Neurology 68:92–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Velayos-Baeza, A., Lévecque, C., Dobson-Stone, C., Monaco, A.P. (2008). The Function of Chorein. In: Walker, R.H., Saiki, S., Danek, A. (eds) Neuroacanthocytosis Syndromes II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71693-8_7

Download citation

Publish with us

Policies and ethics