Skip to main content

Point Defects in Stacks of High-κ Metal Oxides on Ge: Contrast with the Si Case

  • Chapter
Advanced Gate Stacks for High-Mobility Semiconductors

Part of the book series: Advanced Microelectronics ((MICROELECTR.,volume 27))

Summary

The results are overviewed of an ESR analysis in combination with an electrical capacitance—voltage and conductance—voltage study of point defects and traps in (100) Ge/GeO x N y /HfO2 and (100)Ge/GeO2 structures. Comparative study suggests drastic differences in the interface defect properties of the (100)Ge/GeO x N y /HfO2 and (100)Ge/GeO2 interfaces from the seemingly isomorphic interfaces of (100)Si with the HfO2 and SiO2. ESR fails to detect dangling bond centers associated with Ge crystal surface atoms — only paramagnetic defects in the near-interfacial Ge oxide or Ge (oxy) nitride layers are observed which show no correlation with the major portion of electrically active traps; their atomic nature remains unknown. In contrast with the amphoteric traps related to the dangling bonds (P b -type centers) commonly observed at the silicon/insulator interfaces, the major component of the Ge/insulator interface trap spectrum comes from slow acceptor states which show no immediate correlation with the observed paramagnetic centers. The influence of thermal passivation in H2 is addressed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.D. Hutcheson, Interface 14, 17 (2005); H. Wong and H. Iwai, Physics World 18,40 (2005).

    Google Scholar 

  2. The International Technology Roadmap for Semiconductors edn 2003 (SIA, San Jose, CA); http://public.itrs.net/

  3. S.H. Lo, D.A. Buchanan, Y. Taur, and W. Wang, IEEE Electron. Device Lett. 18,209 (1997).

    Article  Google Scholar 

  4. G. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  Google Scholar 

  5. R.M. Wallace and G. Wilk, Crit. Rev. Solid State 28, 231 (2003).

    Article  Google Scholar 

  6. M.L. Green, E.P. Gusev, R. Degraeve, and E. Garfunkel, J. Appl. Phys. 90, 2057 (2001).

    Article  Google Scholar 

  7. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).

    Article  Google Scholar 

  8. High -κ gate dielectrics, edited by M. Houssa (Institute of Physics Publishing, Bristol, 2004).

    Google Scholar 

  9. High Dielectric Constant Materials: VLSI MOSFET Applications, edited by H.R. Huff and D.C. Gilmer, (Springer Series in Advanced Microelectronics, 2004).

    Google Scholar 

  10. M.-A. Nicolet and W.-S. Liu, Microelectron. Eng. 28, 185 (1995).

    Article  Google Scholar 

  11. K. Prabhakaran and T. Ogino, Surf. Sci. 325, 263 (1995).

    Article  Google Scholar 

  12. K. Kita, K. Kyuno, and A. Toriumi, Appl. Phys. Lett. 85, 52 (2004).

    Article  Google Scholar 

  13. S.J. Wang, A.C.H. Huan, Y.L. Foo, J.W. Chai, J.S. Pan, Q. Li, Y.F. Dong, Y.P. Feng, and C.K. Ong, Appl. Phys. Lett. 85, 4418 (2004).

    Article  Google Scholar 

  14. T. Maeda, T. Yasuda, M. Nishizawa, N. Miyata, Y. Morita, and S. Takagi, Appl. Phys. Lett. 85, 3181 (2004).

    Article  Google Scholar 

  15. C.O. Chui, H. Kim, D. Chi, B.B. Triplett, P.C. McIntyre, and K.C. Saraswat, Techn. Dig. - Int. Electron Devices Meet. 2002, 437.

    Google Scholar 

  16. H. Shang, H. Okorn-Schmidt, K.K. Chan, M. Copel, J.A. Ott, P. M. Kozlowski, S.E. Steen, H.-S.P. Wong, E.C. Jones, and W.E. Haensch, Techn. Dig. - Int. Electron Devices Meet. 2002, 441.

    Google Scholar 

  17. W.P. Bai, N. Lu, J. Liu, A. Ramirez, D.L. Kwong, D. Wristers, A. Ritenour, L. Lee, and D. Antoniadis, Techn. Dig. VLSI Symp. 2003, 121.

    Google Scholar 

  18. M. Houssa, B. DeJaeger, A. Delabie, S. Van Elschocht, V.V. Afanas’ev, J.L. Autran, A. Stesmans, M. Meuris, and M.M. Heyns, J. Non-Cryst. Solids 251, 1902 (2005).

    Article  Google Scholar 

  19. A. Dimoulas, G. Vellianitis, G. Mavrou, E.K. Evangelou, and A. Sotiropoulos, Appl. Phys. Lett. 86, 223507 (2005).

    Article  Google Scholar 

  20. H. Kim, P.C. McIntyre, C.O. Chui, K.C. Saraswat, and M.-H. Cho, Appl. Phys. Lett. 85, 2902 (2004).

    Article  Google Scholar 

  21. V.V. Afanas’ev and A. Stesmans, Appl. Phys. Lett. 84, 2319 (2004).

    Article  Google Scholar 

  22. K.-III Seo, P.C. McIntyre, S. Sun, D.-I. Lee, P. Pianetta, and K.C. Saraswat, Appl. Phys. Lett. 87, 042902 (2005).

    Article  Google Scholar 

  23. N. Lu, W. Bai, A. Raminez, C. Mouli, A. Ritenour, M.L. Lee, D. Antoniadis, and D.L. Kwong, Appl. Phys. Lett. 87, 051922 (2005).

    Article  Google Scholar 

  24. S. Van Elshocht, B. Brijs, M. Caymax, T. Conard, T. Chiarella, S. De Gendt, B. De Jaeger, K. Kubicek, M. Meuris, B. Onsia, O. Richard, I. Teerlinck, J. Van Steenbergen, C. Zhao, and M. Heyns, Appl. Phys. Lett. 85, 3824 (2004).

    Article  Google Scholar 

  25. C.O. Chui, H. Kim, P.C. McIntyre, and K.C. Saraswat, IEEE Electron Device Lett. 25, 274 (2004).

    Article  Google Scholar 

  26. N. Wu, Q. Zhang, C. Zhu, D.S.H. Chan, M.F. Li, N. Balasubramanian, A. Chin, and D.-L. Kwong, Appl. Phys. Lett. 85, 4127 (2004).

    Article  Google Scholar 

  27. N. Wu, Q. Zhang, C. Zhu, C.C. Yeo, S.J. Whang, A. Chin, Dim-Lee Kwong, A.Y. Du, C.H. Tung, and N. Balasubramanian, Appl. Phys. Lett. 84, 3741 (2004).

    Article  Google Scholar 

  28. F. Gao, S.J. Lee, J.S. Pan, L.J. Tang, and D.-L. Kwong, Appl. Phys. Lett. 86, 113501 (2005).

    Article  Google Scholar 

  29. A. Delabie, R.L. Puurunen, B. Brijs, M. Caymax, T. Conard, B. Onsia, O. Richard, W. Vandervorst, C. Zhao, M.M. Heyns, M. Meuris, M.M. Vitanen, H.H. Brongersma, M. de Ridder, L.V. Goncharova, E. Garfunkel, T. Gustafsson, and W. Tsai, J. Appl. Phys. 97, 064104 (2005).

    Article  Google Scholar 

  30. C.O. Chui, S. Ramanathan, B.B. Triplett, P. McIntyre, and K.C. Saraswat, IEEE Electron Dev. Lett. 23, 473 (2002).

    Article  Google Scholar 

  31. H. Shang, H. Okorn-Schmidt, J. Ott, P. Kozlowski, S. Steen, E.C. Jones, H.S. Wong, and W. Hanesch, IEEE Electron Dev. Lett. 24, 242 (2003).

    Article  Google Scholar 

  32. G.J. Gerardi, E.H. Pointdexter, P.J. Caplan, and N.M. Johnson, Appl. Phys. Lett. 49 348 (1986).

    Article  Google Scholar 

  33. A. Stesmans and V.V. Afanas’ev; Phys. Rev. B. 57, 10030 (1998).

    Article  Google Scholar 

  34. A. Stesmans and V.V. Afanas’ev, J. Appl. Phys. 83, 2449 (1998).

    Article  Google Scholar 

  35. A. Stesmans and V.V. Afanas’ev, J. Phys.: Condens. Matter 13, L673 (2001).

    Article  Google Scholar 

  36. A. Stesmans and V.V. Afanas’ev, Appl. Phys. Lett. 80, 1957 (2002).

    Article  Google Scholar 

  37. J.L. Cantin and H.J. von Bardeleben, J. Non-Cryst. Solids 303, 175 (2002)

    Article  Google Scholar 

  38. S. Baldovino, S. Nokrin, G. Scarel, M. Fanciulli, T. Graf, and M. S. Brandt, J. Non-Cryst. Solids 322, 168 (2003).

    Article  Google Scholar 

  39. B.J. Jones and R.C. Barklie, Microelectron. Eng. 80, 74 (2005).

    Article  Google Scholar 

  40. R. Helms and E.H. Poindexter, Rep. Prog. Phys. 83, 2449 (1998).

    Google Scholar 

  41. A. Stesmans and V.V. Afanas’ev, Appl. Phys. Lett. 82, 4074 (2003).

    Article  Google Scholar 

  42. A.Y. Kang, P.M. Lenahan, J.F. Conley, Jr, and R. Solanski, Appl. Phys. Lett. 81,1128 (2002).

    Article  Google Scholar 

  43. A.Y. Kang, P.M. Lenahan, and J.F. Conley, Jr, Appl. Phys. Lett. 83, 3407 (2003).

    Article  Google Scholar 

  44. A. Stesmans, V. Afanas’ev, F. Chen, and S.A. Campbell, Appl. Phys. Lett. 84, 4574 (2004).

    Article  Google Scholar 

  45. V. Lowalekar and S. Raghavan, J. Non-Cryst. Solids 351, 1559 (2005)

    Article  Google Scholar 

  46. A. Stesmans and V.V. Afanas’ev, Appl. Phys. Lett. 85, 3792 (2004); J. Appl. Phys. 97, 033510 (2005).

    Article  Google Scholar 

  47. A. Stesmans, Phys. Rev. B 48, 2418 (1993).

    Article  Google Scholar 

  48. A. Pusel, U. Wetterauer, and P. Hess, Phys. Rev. Lett 81, 645 (1998).

    Article  Google Scholar 

  49. T. Vondrak and X.Y. Zhu, J. Phys. Chem. B 103, 4892 (1999).

    Article  Google Scholar 

  50. K.L. Brower, Phys. Reb. B 38, 9657 (1988).

    Article  Google Scholar 

  51. A. Stesmans, Appl. Phys. Lett. 68, 2076 (1996); 68, 2723 (1996).

    Article  Google Scholar 

  52. Y.G. Fedorenko, L. Truong, V.V. Afanas’ev, and A. Stesmans, Appl. Phys. Lett. 84, 4771 (2004).

    Article  Google Scholar 

  53. W. Ranke and J. Wasserfall, Surf. Sci. 303, 45 (1994).

    Article  Google Scholar 

  54. A. Stesmans and V.V. Afanas’ev, Appl. Phys. Lett. 77, 1469 (2000).

    Article  Google Scholar 

  55. E.H. Poindexter, Semicond. Sci. Technol. 4, 961 (1989).

    Article  Google Scholar 

  56. S.A. Campbell, T.Z. Ma, R. Smith, W.L. Gladfelter, and F. Chen, Microelectron. Eng. 59, 361 (2001).

    Article  Google Scholar 

  57. A. Stesmans and V.V. Afanas’ev, Appl. Phys. Lett. 77, 1469 (2000); 82, 2835 (2003).

    Article  Google Scholar 

  58. W.L. Warren, F.C. Rong, E.H. Poindexter, G.J. Gerardi, and J. Kanicki, J. Aoppl. Phys. 70, 346 (1991).

    Article  Google Scholar 

  59. M.E. Zvanut, W.E. Carlos, M.E. Twigg, R. Stahlbush, and D.J. Godbey, J. Vac. Sci. Technol. B 10, 2026 (1992).

    Article  Google Scholar 

  60. S. Lebib, M. Schoisswohl, J.L. Cantin, and H.J. von Bardeleben, Thin Solid Films 294, 242 (1997).

    Article  Google Scholar 

  61. G.K. Walters and T.L. Estle, J. Appl. Phys. 32, 1854 (1961).

    Article  Google Scholar 

  62. M.H. Brodsky and R.S. Title, Phys. Rev. Lett. 23, 581 (1969).

    Article  Google Scholar 

  63. T.-E. Tsai, D.L. Griscom, E.J. Friebele, and J.W. Fleming, J. Appl. Phys. 62, 2264 (1987).

    Article  Google Scholar 

  64. A. Stesmans, J. Braet, J. Witters, and R.F. DeKeersmaecker, J. Appl. Phys. 55,1551 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Stesmans, A., Afanas’ev, V.V. (2007). Point Defects in Stacks of High-κ Metal Oxides on Ge: Contrast with the Si Case. In: Dimoulas, A., Gusev, E., McIntyre, P.C., Heyns, M. (eds) Advanced Gate Stacks for High-Mobility Semiconductors. Advanced Microelectronics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71491-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71491-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71490-3

  • Online ISBN: 978-3-540-71491-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics