Skip to main content

Processing and Characterization of III–V Compound Semiconductor MOSFETs Using Atomic Layer Deposited Gate Dielectrics

  • Chapter
Book cover Advanced Gate Stacks for High-Mobility Semiconductors

Part of the book series: Advanced Microelectronics ((MICROELECTR.,volume 27))

Summary

We demonstrate III–V compound semiconductor (GaAs, InGaAs, and GaN) based metal-oxide-semiconductor field-effect transistors (MOSFETs) with excellent performance using an Al2O3 high-permittivity (high-κ) gate dielectric, deposited by atomic layer deposition (ALD). These MOSFET devices exhibit extremely low gate-leakage current, high transconductance, high dielectric breakdown strength, a high short-circuit current-gain cut-off frequency (f T) and maximum oscillation frequency (f MAX), as well as high output power and power added efficiency. ALD is a robust process that enables repeatability and manufacturability for compound semiconductor MOSFETs. In order to contribute to the fundamental understanding of ALD-grown high-κ/III–V gate stack quality, we discuss stack and interface formation mechanisms in detail for Al2O3 and HfO2 gate dielectrics on GaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Mimura and M. Fukuta, “Status of the GaAs Metal-Oxide-Semiconductor Technology”, IEEE Trans. Electron Devices, vol.ED-27, pp. 1147-1155, 1980, and references therein

    Article  Google Scholar 

  2. “Physics and Chemistry of III-V Compound Semiconductor Interfaces”, Ed. C.W. Wilmsen, Plenum, New York, 1985, and references therein

    Google Scholar 

  3. “Semiconductor-insulator interfaces”, M. Hong, C.T. Liu, H. Reese, and J. Kwo in “Encyclopedia of Electrical and Electronics Engineering”, volume 19, pp. 87-100, Ed. J.G. Webster, Published by John Wiley & Sons, New York, 1999, and references therein

    Google Scholar 

  4. S. Tiwari, S.L. Wright, and J. Batey, “Unpinned GaAs MOS capacitors and transistors”, IEEE Electron Devices Lett., 9, pp. 488-490, 1988

    Article  Google Scholar 

  5. C.L. Chen, F.W. Smith, B.J. Clifton, L.J. Mahoney, M.J. Manfra, and A.R. Calawa, “High-Power-Density GaAs MISFET’s with a low-temperature-grown epitaxial layer as the insulator”, IEEE Electron Devices Lett., 12, pp. 306-308, 1991

    Article  Google Scholar 

  6. Y.H. Jeong, K.H. Choi, and S.K. Jo, “Sulfide treated GaAs MISFET’s with gate insulator of photo-CVD grown P3 N5 film”, IEEE Electron Devices Lett., 15, pp. 251-253, 1994

    Article  Google Scholar 

  7. E.I. Chen, N. Holonyak, and S.A. Maranowski, “AlxGa1-xAs-GaAs metal-oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs”, Appl. Phys. Lett., 66, pp. 2688-2690, 1995

    Article  Google Scholar 

  8. J.Y. Wu, H.H. Wang, Y.H. Wang, and M.P. Houng, “A GaAs MOSFET with a liquid phase oxidized gate”, IEEE Electron Devices Lett., 20, pp. 18-20, 1999

    Article  Google Scholar 

  9. T. Waho and F. Yanagawa, “A GaAs MISFET using an MBE-grown CaF2 gate insulator layer”, IEEE Electron Devices Lett., 9, pp. 548-549, 1988

    Article  Google Scholar 

  10. G.W. Pickrell, J.H. Epple, K.L. Chang, K.C. Hsieh, and K.Y. Cheng, “Improve-ment of wet-oxidized AlxGa1−xAs(x∼1) through the use of AlAs/GaAs digital alloys”, Appl. Phys. Lett., 76, pp. 2544-2546, 2000

    Article  Google Scholar 

  11. J.C. Ferrer, Z. Liliental-Weber, H. Reese, Y.J. Chiu, and E. Hu, “Improvement of the interface quality during thermal oxidation of Al0.98 Ga0.02 As layers due to the presence of low-temperature-grown GaAs”, Appl. Phys. Lett., 77, pp. 205-207, 2000

    Article  Google Scholar 

  12. S. Yokoyama, K. Yukitomo, M. Hirose, Y. Osaka, A. Fischer, and K. Ploog, “GaAs MOS structures with Al2 O3 grown by molecular beam reaction”, Surf. Sci., 86, pp. 835-840, 1979

    Article  Google Scholar 

  13. J. Reed, G.B. Gao, A. Bochkarev, and H. Morkoc, “Si3 N4 /Si/Ge/GaAs metal-insulator-semiconductor structures grown by in situ chemical vapor deposition”, J. Appl. Phys., 75, pp.1826-1828, 1994

    Article  Google Scholar 

  14. B.J. Skromme, C.J. Sandroff, E. Yablonovitch, and T. Gmitter, Appl. Phys. Lett. 51, 2022 (1987)

    Article  Google Scholar 

  15. G.G. Fountain, R.A. Rudder, S.V. Hattangady, R.J. Markunas, and J.A. Hutchby, IEDM Tech, Dig. 887 (1989)

    Google Scholar 

  16. M. Akazawa, H. Ishii, and H. Hasegawa, Jpn. J. Appl. Phys., Part 1 30, 3744 (1991)

    Article  Google Scholar 

  17. A. Callegari, P.D. Hoh, D.A. Buchanan, and D. Lacey, Appl. Phys. Lett. 54, 332 (1989)

    Article  Google Scholar 

  18. S.D. Offsey, J.M. Woodall, A.C. Warren, P.D. Kirchner, T.I. Chappell, and G.D. Pettit, Appl. Phys. Lett. 48, 475 (1986)

    Article  Google Scholar 

  19. M.J. Hale, S.I. Yi, J.Z. Sexton, A.C. Kummel, and M. Passlack, J. Chem. Phys. 119,6719 (2003)

    Article  Google Scholar 

  20. W.E. Spicer, Z. Liliental-Weber, E. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Sci. Technol. B 6,1245 (1988)

    Article  Google Scholar 

  21. K. Eguchi and T. Katoda, Jpn. J. Appl. Phys. 24, 1043 (1985)

    Article  Google Scholar 

  22. M. Hong, M. Passlack, J.P. Mannaerts, J. Kwo, S.N.G. Chu, N. Moriya, S.Y. Hou, and V.J. Fratello, “Low interface state density oxide-GaAs structures fab-ricated by in situ molecular beam epitaxy”, J. Vac. Sci. Technol. B, 14, pp. 2297-2300, 1996

    Article  Google Scholar 

  23. M. Passlack, M. Hong, J.P. Mannaerts, R.L. Opila, S.N.G. Chu, N. Moriya, F. Ren, J.R. Kwo, “ Low Dit , thermodynamically stable Ga2 O3 -GaAs interfaces: Fabrication, characterization, and modeling”, IEEE Trans. Electron Devices, 44, pp. 214-225, 1997

    Article  Google Scholar 

  24. M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, and A.M. Sergent, “Epitax-ial cubic Gadolinium oxide as a dielectric for Gallium Arsenide passivation”, Science, 283, pp. 1897-1900, 1999

    Article  Google Scholar 

  25. J. Kwo, D.W. Murphy, M. Hong, R.L. Opila, J.P. Mannaerts, A.M. Sergent, and R.L. Masaitis, “Passivation of GaAs using (Ga2 O3 )1−x (Gd2 O3 )x , 0 < x < 1.0 films”, Appl. Phys. Lett., 75, pp. 1116-1118, 1999

    Article  Google Scholar 

  26. F. Ren, M. Hong, W.S. Hobson, J.M. Kuo, J.R. Lothian, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, and A.Y. Cho, “Demonstration of enhancement-mode p- and n-channel GaAs MOSFETs with Ga2 O3 (Gd2 O3 ) as gate oxide”, Solid-State Electron., 41, pp. 1751-1753, 1997

    Article  Google Scholar 

  27. Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, J. Kwo, H.S. Tsai, J.J. Kra-jewski, Y.K. Chen, and A.Y. Cho, “Demonstration of submicron depletion-mode GaAs MOSFET’s with negligible drain current drift and hysteresis”, IEEE Elec-tron Devices Lett., 20, pp. 457-459, 1999

    Article  Google Scholar 

  28. M. Passlack, J.K. Abrokwah, R. Droopad, Z. Yu, C. Overgaard, S. I. Yi, M. Hale, J. Sexton, and A.C. Kummel, “Self-aligned GaAs p-channel enhancement mode MOS heterostructure field-effect transistor”, IEEE Electron Devices Lett., 23, pp. 508-510, 2002

    Article  Google Scholar 

  29. P.D. Ye, G.D. Wilk, J. Kwo, B. Yang, H.-J.L. Gossmann, M. Frei, S.N.G. Chu, J.P. Mannaerts, M. Sergent, M. Hong, K. Ng, J. Bude, “GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition”, IEEE Electron Device Lett., 24, No.4, 209 (April 2003)

    Article  Google Scholar 

  30. P.D. Ye, G.D. Wilk, J. Kwo, B. Yang, H.-J.L. Gossmann, M.R. Frei, S.N.G. Chu, S. Nakahara, J.P. Mannaerts, M. Sergent, M. Hong, K. Ng, J. Bude, “GaAs-based MOSFETs with Al2 O3 gate dielectrics grown by atomic layer deposition”, J. Electronic Mater., 33, No.8, 912-915 (Aug 2004)

    Article  Google Scholar 

  31. P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, S.N.G. Chu, S. Nakahara, H.-J.L. Goss-mann, J.P. Mannaerts, M. Hong, K. Ng, J. Bude, “GaAs MOSFET with nm-thin dielectric grown by atomic layer deposition”, Appl. Phys. Lett. 83, 180 (2003)

    Article  Google Scholar 

  32. P.D. Ye, G.D. Wilk, B. Yang, S.N.G. Chu, H.-J.L. Gossmann, K. Ng, J. Bude, “Improvement of GaAs MESFET drain breakdown voltage by oxide surface passivation grown by atomic layer deposition”, Solid State Electron., 49, Issue 5,790-794 (May 2005)

    Article  Google Scholar 

  33. P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, H.-J.L. Gossmann, M. Hong, K. Ng, J. Bude, “Depletion-mode InGaAs MOSFET with oxide gate dielectric grown by atomic layer deposition”, Appl. Phys. Lett. 84, January 17 (2004)

    Google Scholar 

  34. P.D. Ye, B. Yang, K.K. Ng, J. Bude, G.D. Wilk, S. Halder and J.C.M. Hwang “GaN MOS-HEMT with atomic layer deposition Al2 O3 as gate dielectric”, Appl. Phys. Lett. 86, 063501 (2005).

    Article  Google Scholar 

  35. P.D. Ye, G.D. Wilk, E. Tois, and J.J. Wang, “Formation and characterization of nanometer scale metal-oxide-semiconductor structures on GaAs using low-temperature atomic layer deposition”, Appl. Phys. Lett. 87, (July 4, 2005).

    Google Scholar 

  36. G.D. Wilk, R.M. Wallace, and J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys., 89, pp. 5243-5275,2001.

    Article  Google Scholar 

  37. Martin M. Frank, Glen D. Wilk, Dmitri Starodub, Torgny Gustafsson, Eric Garfunkel, Yves J. Chabal, John Grazul, and David A. Muller, “HfO2 and Al2 O3 gate dielectrics on GaAs grown by atomic layer deposition”, Appl. Phys. Lett. 86,152904 (2005)

    Article  Google Scholar 

  38. K. Tone, M. Yamada, Y. Ide, and Y. Katayama, Jpn. J. Appl. Phys., Part 2 31, L721 (1992)

    Article  Google Scholar 

  39. F. Schröder, W. Storm, M. Altebockwinkel, L. Wiedmann, and A. Bennighoven, J. Vac. Sci. Technol. B 10, 1291 (1992)

    Article  Google Scholar 

  40. S. Adachi and D. Kikuchi, J. Electrochem. Soc. 147, 4618 (2000)

    Article  Google Scholar 

  41. A. Delabie, R.L. Puurunen, B. Brijs, M. Caymax, T. Conard, B. Onsia, O. Richard, W. Vandervorst, C. Zhao, M.M. Viitanen, H.H. Brongersma, M. de Ridder, L.V. Goncharova, E. Garfunkel, T. Gustafsson, W. Tsai, M.M. Heyns, and M. Meuris, J. Appl. Phys., submitted

    Google Scholar 

  42. D.R. Lide, CRC Handbook of Chemistry and Physics, 85 ed. (CRC Press, Boca Raton, 2004)

    Google Scholar 

  43. I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances. (Springer-Verlag, Berlin, 1973)

    Google Scholar 

  44. M.D. Groner, J.W. Elam, F.H. Fabreguette, and S.M. George, Thin Solid Films 413,186 (2002)

    Article  Google Scholar 

  45. W.S. Yang, Y.K. Kim, S.Y. Yang, J.H. Choi, H.S. Park, S.I. Lee, J.B. Yoo, Surf. Coat. Tech. 131, 79 (2000)

    Article  Google Scholar 

  46. G.S. Higashi and C.G. Fleming, Appl. Phys. Lett. 55, 1963 (1989)

    Article  Google Scholar 

  47. J. Fan, K. Sugioka, K. Toyoda, Jpn. J. Appl. Phys. 30, L1139 (1991)

    Article  Google Scholar 

  48. H. Kattelus, M. Ylilammi, J. Saarilahti, J. Antson, S. Lindfors, Thin Solid Films 225,296 (1993)

    Article  Google Scholar 

  49. K. Kukli, M. Ritala, M. Leskela and J. Jokinene, J. Vac. Sci. Technol. A 15, 2214 (1997)

    Article  Google Scholar 

  50. P. Ericsson, S. Bengtsson, and J. Skarp, Microelectron. Eng. 36, 91 (1997)

    Article  Google Scholar 

  51. V.E. Drozd, A.P. Baraban and I.O. Nikiforova, Appl. Surf. Sci. 82/83, 583 (1994)

    Article  Google Scholar 

  52. Zhijiong Luo and T.P. Ma, “A New Method to Extract EOT of Ultrathin Gate Dielectric With High Leakage Current”, IEEE Electron Device Lett., 25, No.9, 655 (2004)

    Article  Google Scholar 

  53. M. Asif Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M.S. Shur, IEEE Electron Devices Lett. 21, 63 (2000)

    Article  Google Scholar 

  54. M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M.S. Shur, Appl. Phys. Lett, 77, 1339 (2000)

    Article  Google Scholar 

  55. G. Simon, X. Hu, N. Ilinskaya, A. Kumar, A. Koudymov, J. Zhang, M.A. Khan, R. Gaska, and M.S. Shur, Electronics Lett. 36, 2043 (2000)

    Article  Google Scholar 

  56. A. Koudymov, X. Hu, K. Simin, G. Simin, M. Ali, J. Yang, and M. Asif Khan, IEEE Electron Devices Lett., 23, 449 (2002)

    Article  Google Scholar 

  57. G. Simin, A. Koudymov, H. Fatima, J. Zhang, J. Yang, and M. Asif Khan, X. Hu, A. Tarakji, R. Gaska, and M.S. Shur, IEEE Electron Devices Lett. 23, 458 (2002)

    Article  Google Scholar 

  58. G. Simon, X. Hu, N. Ilinskaya, J. Zhang, A. Tarakji, A. Kumar, J. Yang, M. Asif Khan, R. Gaska, and M.S. Shur, IEEE Electron Devices Lett. 22, 53 (2001)

    Article  Google Scholar 

  59. X. Hu, A. Koudymov, G. Simon, J. Yang, M. Asif Khan, A. Tarakji, M.S. Shur, and R. Gaska, Appl. Phys. Lett, 79, 2832 (2000)

    Article  Google Scholar 

  60. S. Ootomo, T. Hashizume, and H. Hasegawa, phys. stat. sol. (c) 1, 90 (2002).

    Google Scholar 

  61. T. Hashizume, S. Ootomo, and H. Hasegawa, Appl. Phys. Lett. 83, 2952 (2003)

    Article  Google Scholar 

  62. R. Mehandru, B. Luo, J. Kim, F. Ren, B.P. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, D. Gotthold, R. Birkhahn, B. Peres, R. Fitch, J. Gillespie, T. Jenkins, J. Sewell, D. Via and A. Crespo, Appl. Phys. Lett. 82, 2530 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Ye, P.D., Wilk, G.D., Frank, M.M. (2007). Processing and Characterization of III–V Compound Semiconductor MOSFETs Using Atomic Layer Deposited Gate Dielectrics. In: Dimoulas, A., Gusev, E., McIntyre, P.C., Heyns, M. (eds) Advanced Gate Stacks for High-Mobility Semiconductors. Advanced Microelectronics, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71491-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71491-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71490-3

  • Online ISBN: 978-3-540-71491-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics