Skip to main content

Drag Minimization of the Cylinder Wake by Trust-Region Proper Orthogonal Decomposition

  • Conference paper

Abstract

In this paper we investigate the optimal control approach for the active control of the circular cylinder wake flow considered in the laminar regime (Re = 200). The objective is the minimization of the mean total drag where the control function is the time harmonic angular velocity of the rotating cylinder. When the Navier-Stokes equations are used as state equations, the discretization of the optimality system leads to large scale discretized optimization problems that represent a tremendous computational task. In order to reduce the number of state variables during the optimization process, a Proper Orthogonal Decomposition (POD) Reduced-Order Model (ROM) is then derived to be used as state equation. Since the range of validity of the POD ROM is generally limited to the vicinity of the design parameters in the control parameter space, we propose to use the Trust-Region Proper Orthogonal Decomposition (TRPOD) approach, originally introduced by Fahl (2000), to update the reduced-order models during the optimization process. Benefiting from the trust-region philosophy, rigorous convergence results guarantee that the iterates produced by the TRPOD algorithm will converge to the solution of the original optimization problem defined with the Navier-Stokes equations. A lot of computational work is indeed saved because the optimization process is now based only on low-fidelity models. The key enablers to an accurate and robust POD ROM for the pressure and velocity fields are the extension of the POD basis functions to the pressure data, the introduction of a time-dependent eddy-viscosity estimated for each POD mode as the solution of an auxiliary optimization problem, and the inclusion in the POD ROM of different non-equilibrium modes. When the TRPOD algorithm is applied to the wake flow configuration, this approach converges to the minimum predicted by an open-loop control approach and leads to a relative mean drag reduction of 30% for reduced numerical costs (a cost reduction factor of 1600 is obtained for the memory and the optimization problem is solved approximately 4 times more quickly).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gunzburger, M.: Flow control. Springer, New York (1995)

    MATH  Google Scholar 

  2. Gunzburger, M.: Introduction into mathematical aspects of flow control and optimization. In: Lecture series 1997-05 on inverse design and optimization methods. Von Kármán Institute for Fluid Dynamics (1997)

    Google Scholar 

  3. Cordier, L., Bergmann, M.: Proper Orthogonal Decomposition: an overview. In: Lecture series 2002-04 on post-processing of experimental and numerical data. Von Kármán Institute for Fluid Dynamics (2002)

    Google Scholar 

  4. Cordier, L., Bergmann, M.: Two typical applications of POD: coherent structures eduction and reduced order modelling. In: Lecture series 2002-04 on postprocessing of experimental and numerical data. Von Kármán Institute for Fluid Dynamics (2002)

    Google Scholar 

  5. Bergmann, M., Cordier, L., Brancher, J.P.: Optimal rotary control of the cylinder wake using POD Reduced Order Model. Phys. Fluids 17 (2005) 097101:1–21

    Article  Google Scholar 

  6. Fahl, M.: Trust-Region methods for flow control based on Reduced Order Modeling. PhD thesis, Trier university (2000)

    Google Scholar 

  7. Williamson, C.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid. Mech. 28 (1996) 477–539

    Article  Google Scholar 

  8. Protas, B., Wesfreid, J.: Drag force in the open-loop control of the cylinder wake in the laminar regime. Phys. Fluids 14 (2002) 810–826

    Article  Google Scholar 

  9. He, J.W., Glowinski, R., Metcalfe, R., Nordlander, A., Périaux, J.: Active control and drag optimization for flow past a circular cylinder. Part 1. Oscillatory cylinder rotation. J. Comp. Phys. 163 (2000) 83–117

    Article  MATH  Google Scholar 

  10. Homescu, C., Navon, I., Li, Z.: Suppression of vortex shedding for flow around a circular cylinder using optimal control. Int. J. Numer. Meth. Fluids 38 (2002) 43–69

    Article  MATH  Google Scholar 

  11. Bergmann, M., Cordier, L.: Control of the cylinder wake in the laminar regime by Trust-Region methods and POD Reduced Order Models. Soumis à J. Fluid Mech. (2006)

    Google Scholar 

  12. Conn, A., Gould, N., Toint, P.: Trust-region methods. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  13. Noack, B., Afanasiev, K., Morzyński, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497 (2003) 335–363

    Article  MATH  Google Scholar 

  14. Galletti, B., Bruneau, C.H., Zannetti, L., Iollo, A.: Low-order modelling of laminar flow regimes past a confined square cylinder. J. Fluid Mech. 503 (2004) 161–170

    Article  MATH  Google Scholar 

  15. Bergmann, M.: Optimisation aérodynamique par réduction de modèle POD et contrôle optimal. Application au sillage laminaire d’un cylindre circulaire. PhD thesis, Institut National Polytechnique de Lorraine, Nancy, France (2004)

    Google Scholar 

  16. Graham, W., Peraire, J., Tang, K.: Optimal Control of Vortex Shedding Using Low Order Models. Part 1. Open-Loop Model Development. Int. J. for Numer. Meth. in Engrg. 44 (1999) 945–972

    Article  MATH  Google Scholar 

  17. Nocedal, J., Wright, S.: Numerical Optimization. Springer series in operations research (1999)

    Google Scholar 

  18. Bewley, T.: Flow control: new challenges for a new Renaissance. Progress in Aerospace Sciences 37 (2001) 21–58

    Article  Google Scholar 

  19. Bergmann, M., Cordier, L., Brancher, J.P.: On the generation of a reverse Von Kármán street for the controlled cylinder wake in the laminar regime. Phys. Fluids 18 (2006) 028101:1–4

    Google Scholar 

  20. Tokumaru, P., Dimotakis, P.: Rotary oscillatory control of a cylinder wake. J. Fluid Mech. 224 (1991) 77–90

    Article  Google Scholar 

  21. Protas, B., Styczek, A.: Optimal rotary control of the cylinder wake in the laminar regime. Phys. Fluids 14 (2002) 2073–2087

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergmann, M., Cordier, L., Brancher, JP. (2007). Drag Minimization of the Cylinder Wake by Trust-Region Proper Orthogonal Decomposition. In: King, R. (eds) Active Flow Control. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71439-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71439-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71438-5

  • Online ISBN: 978-3-540-71439-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics