Skip to main content

Solitary waves propagating over variable topography

  • Chapter
Tsunami and Nonlinear Waves

Abstract

Solitary water waves are long nonlinear waves that can propagate steadily over long distances. They were first observed by Russell in 1837 in a now famous report (27) on his observations of a solitary wave propagating along a Scottish canal, and on his subsequent experiments. Some forty years later theoretical work by Boussinesq (8) and Rayleigh (26) established an analytical model. Then in 1895 Korteweg and de Vries (22) derived the well-known equation which now bears their names. Significant further developments had to wait until the second half of the twentieth century, when there were two parallel developments. On the one hand it became realised that the Korteweg-de Vries equation was a valid model for solitary waves in a wide variety of physical contexts. On the other hand came the discovery of the soliton by Kruskal and Zabusky (28), with the subsequent rapid development of the modern theory of solitons and integrable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz, M. and H. Segur, H. (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics 4, Philadeplhia.

    Google Scholar 

  2. Drazin, P.G. and Johnson, R.S. (1989). Solitons: an Introduction. Cambridge University Press, Cambridge.

    Google Scholar 

  3. Kamchatnov, A.M. (2000) Nonlinear Periodic Waves and Their Modulations: An Introductory Course. World Scientific, Singapore.

    Google Scholar 

  4. Whitham, G.B. (1974). Linear and Nonlinear Waves, Wiley, New York.

    Google Scholar 

  5. Grimshaw, R. (2001) Internal solitary waves, in “Environmental Stratified Flows”. Kluwer, Boston, Chapter 1, 1–28.

    Google Scholar 

  6. P. Holloway, E. Pelinovsky and T. Talipova 2001. Internal tide transformation and oceanic internal solitary waves. In “Environmental Stratified Flows” (Kluwer, Boston, Chapter 2: 29–60, 2001).

    Google Scholar 

  7. J. Rottman and R. Grimshaw. Atmospheric internal solitary waves. In “Environmental Stratified Flows” (Kluwer, Boston, Chapter 3: 61–88, 2001).

    Google Scholar 

  8. Boussinesq. M.J. (1871) Theórie de l’intumescence liquide appelléee onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus Acad. Sci (Paris), 72, 755–759.

    Google Scholar 

  9. Djordjevic, V. D. and Redekopp, L.G. (1978). The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. of Phys. Ocean., 8, 1016–1024.

    Article  Google Scholar 

  10. El, G.A. and Grimshaw, R. (2002) Generation of undular bores in the shelves of slowly-varying solitary waves. Chaos, 12, 1015–1026.

    Article  Google Scholar 

  11. Grimshaw, R. (1970). The solitary wave in water of variable depth. J. Fluid Mech., 42, 639–656.

    Article  Google Scholar 

  12. Grimshaw, R. (1979) Slowly varying solitary waves. I Korteweg-de Vries equation. Proc. Roy. Soc., 368A, 359–375.

    Google Scholar 

  13. Grimshaw, R. (1981) Evolution equations for long nonlinear internal waves in stratified shear flows. Stud. Appl. Math., 65, 159–188.

    Google Scholar 

  14. Grimshaw, R. and Mitsudera, H. (1993) Slowly-varying solitary wave solutions of the perturbed Korteweg-de Vries equation revisited. Stud. Appl. Math., 90, 75–86.

    Google Scholar 

  15. Grimshaw, R., Pelinovsky, E. and Talipova, T. (1998) Solitary wave transformation due to a change in polarity. Stud. Appl. Math., 101, 357–388.

    Article  Google Scholar 

  16. Grimshaw, R., Pelinovsky, E. and Talipova, T. (1999). Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity. Physica D, 132, 40–62.

    Article  Google Scholar 

  17. R. Grimshaw, E. Pelinovsky, T. Talipova, T. and A. Kurkin. Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Ocean., 34, 2774–2779 (2004).

    Article  Google Scholar 

  18. Gurevich, A. V. and Pitaevskii, L. P. (1974) Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291–297.

    Google Scholar 

  19. Johnson, R.S. (1973) On the development of a solitary wave moving over an uneven bottom. Proc. Camb. Phil. Soc., 73, 183–203.

    Article  Google Scholar 

  20. Johnson, R.S. (1973) On an asymptotic solution of the Korteweg-de Vries equation with slowly varying coefficients, J. Fluid Mach., 60, 813–824

    Article  Google Scholar 

  21. Kamchatnov, A.M. (2004). On Whitham theory for perturbed integrable equations, Physica D, 188, 247–261 (2004).

    Article  Google Scholar 

  22. Korteweg, D.J. and de Vries, H. (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine, 39, 422–443.

    Google Scholar 

  23. Miles, J.W. (1979) On the Korteweg-de Vries equation for a gradually varying channel. J. Fluid Mech., 91, 181–190.

    Article  Google Scholar 

  24. Ostrovsky, L.A. and Pelinovsky, E.N. (1970) Wave transformation on the surface of a fluid of variable depth. Akad. Nauk SSSR, Izv. Atmos. Ocean Phys., 6, 552–555.

    Google Scholar 

  25. Ostrovsky, L.A. and Pelinovsky, E.N. (1975). Refraction of nonlinear sea waves in a coastal zone. Akad. Nauk SSSR, Izv. Atmos. Ocean Phys., 11, 37–41.

    Google Scholar 

  26. Lord Rayleigh (1876) On waves. Phil. Mag. 1, 257–279.

    Google Scholar 

  27. Russell, J.S. (1844) Report on Waves. 14th meeting of the British Association for the Advancement of Science, 311–390.

    Google Scholar 

  28. Zabusky, N.J. and Kruskal, M.D. (1965). Interactions of solitons in a collisionless plasma and the recurrence of initial states. Physical Review Letters, 15 240–243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grimshaw, R. (2007). Solitary waves propagating over variable topography. In: Kundu, A. (eds) Tsunami and Nonlinear Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71256-5_3

Download citation

Publish with us

Policies and ethics