Skip to main content

A Novel Graph Optimisation Algorithm for the Extraction of Gene Regulatory Networks from Temporal Microarray Data

  • Conference paper
Bioinformatics Research and Development (BIRD 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4414))

Included in the following conference series:

Abstract

A gene regulatory network (GRN) extracted from microarray data has the potential to give us a concise and precise way of understanding how genes interact under the experimental conditions studied [1, 2]. Learning such networks, and unravelling the knowledge hidden within them is important for drug targets and to understand the basis of disease. In this paper, we analyse microarray gene expression data fromSaccharomyces cerevisiae, to extract Bayesian belief networks (BBNs) which mirror the cell cycle GRN. This is achieved through the use of a novel structure learning algorithm of Taboo search and a novel knowledge extraction technique, target node (TN) analysis. We also show how quantitative and qualitative information captured within the BBN can be used to simulate the nature of interaction between genes. The GRN extracted was validated against literature and genomic databases, and found to be in excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dewey, T.G.: From microarrays to networks: mining expression time series. Drug Discovery Today 7(20), s170–s175 (2002)

    Article  Google Scholar 

  2. Brazhnik, P., de la Fuente, A., Mendes, P.: Gene networks: how to put the function in genomics. Trends in Biotechnology 20(11), 467–472 (2002)

    Article  Google Scholar 

  3. Lewin, B.: Genes VII. Oxford University Press, Oxford (1999)

    Google Scholar 

  4. Spellman, P.T., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology Of The Cell 9(12), 3273–3297 (1998)

    Google Scholar 

  5. Cho, R.J., et al.: A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Molecular Cell 2(1), 65–73 (1998)

    Article  Google Scholar 

  6. Lu, X., et al.: Statistical resynchronization and Bayesian detection of periodically expressed genes. Nucleic Acids Research 32(2), 447–455 (2004)

    Article  Google Scholar 

  7. Friedman, N., et al.: Using Bayesian networks to analyse expression data. Journal of Computational Biology 7(3/4), 601–620 (2000)

    Article  Google Scholar 

  8. Friedman, N.: Learning Bayesian Networks with Local Structure. In: Proceedings of the Twelfth International Conference on Uncertainty in Artificial Intelligence (1996)

    Google Scholar 

  9. Grunwald, P.: Model Selection Based on Minimum Description Length. Journal of Mathamatical Psychology 1(44), 133–152 (2000)

    Article  MathSciNet  Google Scholar 

  10. Fred Glover, M.L.: Tabu Search, p. 408. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  11. Donaldson, A.D., Blow, J.J.: The regulation of replication origin activation. Current Opinion in Genetics & Development 9(1), 62–68 (1999)

    Article  Google Scholar 

  12. Tanaka, S., Diffley, J.F.X.: Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes & Development 16(20), 2639–2649 (2002)

    Article  Google Scholar 

  13. Biggins, S., Murray, A.W.: Sister chromatid cohesion in mitosis. Current Opinion In Genetics & Development 9(2), 230–236 (1999)

    Article  Google Scholar 

  14. Mata, J., Nurse, P.: Discovering the poles in yeast. Trends In Cell Biology 8(4), 163–167 (1998)

    Article  Google Scholar 

  15. Cross, F.R.: Two redundant oscillatory mechanisms in the yeast cell cycle. Developmental Cell 4(5), 741–752 (2003)

    Article  Google Scholar 

  16. Schwob, E., Nasmyth, K.: CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes & Development 7(7A), 1160–1175 (1993)

    Article  Google Scholar 

  17. Schwob, E., et al.: The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. Cell 79(2), 233–244 (1994)

    Article  Google Scholar 

  18. Surana, U., et al.: The role of CDC28 and cyclins during mitosis in the budding yeast S. Cell 65(1), 145–161 (1991)

    Article  Google Scholar 

  19. Andrews, B., Measday, V.: The cyclin family of budding yeast: abundant use of a good idea. Trends In Genetics: TIG 14(2), 66–72 (1998)

    Article  Google Scholar 

  20. Lew, D.J., et al.: Cell cycle control in Saccharomyces cerevisiae, in Molecular and Cellular Biology of the Yeast Saccharomyces. In: Pringle Jr., B.J., Pringle Jr., J.E. (eds.) Cell Cycle and Cell Biology, pp. 607–695. Cold Spring Harbor Laboratory Press, New York (1997)

    Google Scholar 

  21. Tyers, M.: The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Proceedings Of The National Academy Of Sciences Of The United States Of America 93(15), 7772–7776 (1996)

    Article  Google Scholar 

  22. Valdivieso, M.H., et al.: FAR1 is required for posttranscriptional regulation of CLN2 gene expression in response to mating pheromone. Molecular And Cellular Biology 13(2), 1013–1022 (1993)

    Google Scholar 

  23. Guacci, V., Koshland, D., Strunnikov, A.: A Direct Link between Sister Chromatid Cohesion and Chromosome Condensation Revealed through the Analysis of MCD1 in S. cerevisiae. Cell 91(1), 47–57 (1997)

    Article  Google Scholar 

  24. Habraken, Y., et al.: ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. The Journal Of Biological Chemistry 273(16), 9837–9841 (1998)

    Article  Google Scholar 

  25. Werner-Washburne, M., et al.: Comparative analysis of multiple genome-scale data sets. Genome Research 12(10), 1564–1573 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sepp Hochreiter Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kumuthini, J., Jouffe, L., Bessant, C. (2007). A Novel Graph Optimisation Algorithm for the Extraction of Gene Regulatory Networks from Temporal Microarray Data. In: Hochreiter, S., Wagner, R. (eds) Bioinformatics Research and Development. BIRD 2007. Lecture Notes in Computer Science(), vol 4414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71233-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71233-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71232-9

  • Online ISBN: 978-3-540-71233-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics