Skip to main content

Improving the Performance of a Pittsburgh Learning Classifier System Using a Default Rule

  • Conference paper
Book cover Learning Classifier Systems (IWLCS 2003, IWLCS 2004, IWLCS 2005)

Abstract

An interesting feature of encoding the individuals of a Pittsburgh learning classifier system as a decision list is the emergent generation of a default rule. However, performance of the system is strongly tied to the learning system choosing the correct class for this default rule. In this paper we experimentally study the use of an explicit (static) default rule. We first test simple policies for setting the class of the default rule, such as the majority/minority class of the problem. Next, we introduce some techniques to automatically determine the most suitable class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  3. DeJong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept learning. Machine Learning 13(2/3), 161–188 (1993), citeseer.nj.nec.com/dejong93using.html

    Article  Google Scholar 

  4. Rivest, R.L.: Learning decision lists. Machine Learning 2(3), 229–246 (1987), citeseer.nj.nec.com/rivest87learning.html

    Google Scholar 

  5. Janikow, C.: Indictive Learning of Decision Rules in Attribute-Based Examples: a Knowledge-Intensive Genetic Algorithm Approach. Phd dissertation, University of North Carolina (1991)

    Google Scholar 

  6. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  7. Cohen, W.W.: Fast effective rule induction. In: International Conference on Machine Learning, pp. 115–123 (1995), citeseer.nj.nec.com/cohen95fast.html

  8. Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining era: Representations, generalization, and run-time. PhD thesis, Ramon Llull University, Barcelona, Catalonia, Spain (2004)

    Google Scholar 

  9. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on populations in genetic programming. Evolutionary Computation 6(4), 293–309 (1998), citeseer.nj.nec.com/316244.html

    Article  Google Scholar 

  10. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  11. Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the minimum description length principle for a pittsburgh approach learning classifier system. In: Proceedings of the 6th International Workshop on Learning Classifier Systems, Springer, Heidelberg (in press, 2003)

    Google Scholar 

  12. Bacardit, J., Garrell, J.M.: Analysis and improvements of the adaptive discretization intervals knowledge representation. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, Springer, Heidelberg (2004)

    Google Scholar 

  13. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/mlearn/MLRepository.html

  14. Oei, C.K., Goldberg, D.E., Chang, S.J.: Tournament selection, niching, and the preservation of diversity. IlliGAL Report No. 91011, University of Illinois at Urbana-Champaign, Urbana, IL (1991)

    Google Scholar 

  15. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, pp. 1137–1145 (1995), citeseer.nj.nec.com/kohavi95study.html

  16. Goldberg, D.E.: Sizing populations for serial and parallel genetic algorithms. In: Proceedings of the Third International Conference on Genetic Algorithms (ICGA89), pp. 70–79. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tim Kovacs Xavier Llorà Keiki Takadama Pier Luca Lanzi Wolfgang Stolzmann Stewart W. Wilson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bacardit, J., Goldberg, D.E., Butz, M.V. (2007). Improving the Performance of a Pittsburgh Learning Classifier System Using a Default Rule. In: Kovacs, T., Llorà, X., Takadama, K., Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds) Learning Classifier Systems. IWLCS IWLCS IWLCS 2003 2004 2005. Lecture Notes in Computer Science(), vol 4399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71231-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71231-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71230-5

  • Online ISBN: 978-3-540-71231-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics