Skip to main content

Abstract

Predicting the evolution of the components of the water cycle is an important issue both from the scientific and social points of view. The basic problem is to gather all the available information in order to be able to retrieve at best the state of the water cycle. Among some others methods variational methods have a strong potential to achieve this goal. In this paper we will present applications of variational methods to basic problems in hydrology: retrieving the hydrologic state of at a location optimizing the parametrization of hydrologic models and doing sensitivity analysis. The examples will come from surface water as well as underground water. Perspectives of the application of variational methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Belanger E, Vincent A (2005) Data assimilation (4D-VAR) to forecast flood in shallow-waters with sediment erosion. J Hydrol 300(1–4), 114–125

    Article  Google Scholar 

  • Beven K, Musy A, Higy C (2001) Tribune Libre : L’unicité de lieu, d’action et de temps. Revue des Sciences de l’eau 14(4), 525–533.

    Google Scholar 

  • Bouyssel F, Cassé V, Pailleux J (1999) Variational surface analysis from screen level atmospheric parameters. Tellus Ser A 51, 453–468

    Article  Google Scholar 

  • Cacuci D (1981a) Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach. J Math Phys 22(12), 2794–2802.

    Article  Google Scholar 

  • Cacuci D (1981b) Sensitivity theory for nonlinear systems. II. Extensions to additional classes of responses. J Math Phys 22(12), 2803–2812

    Article  Google Scholar 

  • Callies U, Rhodin A, Eppel DP (1998) A case study on variational soil moisture analysis from atmospheric observations. J Hydrol 212–213, 95–108.

    Article  Google Scholar 

  • Calvet J, Noilhan J, Bessemoulin P (1998) Retrieving the root-zone soil moisture from surface soil moisture or temperature estimates: A feasibility study based on field measurements. J Appl Meteorol 37(4), 371–386

    Article  Google Scholar 

  • Carrera J, Neuman S (1986) Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability and solution algorithms. Wat Resour Res 2, 211–227

    Article  Google Scholar 

  • Castaings W, Dartus D, Le Dimet F, Saulnier G (2007) Sensitivity analysis and parameter estimation for the distributed modeling of infiltration excess overland flow. Hydrol Earth Syst Sci Disc 4(1), 363–405

    Google Scholar 

  • Castaings W (2007) Analyse de sensibilité et estimation de paramètres pour la modélisation hydrologique : potentiel et limitations des méthodes variationnelles. Ph. D. dissertation defended at Univerité Joseph-Fourire, Grenoble, France, November 2007

    Google Scholar 

  • Chavent G (1974) Identification of Parameters in Distributed Systems, chapter identification of functional parameter in partial differential equations. Heinemann, 367

    Google Scholar 

  • Chavent G (1991) On the theory and practice of non-linear least square. Adv Wat Resour, 14(2) 55–63

    Article  Google Scholar 

  • Dalcher A, Kalnay E (1987) Error growth and predictability in operational ECMWF forecasts. Tellus 39A, 474–491

    Google Scholar 

  • Derber JC (1989) A variational continuous assimilation technique. Mon Wea Rev 117, 2427–2436

    Article  Google Scholar 

  • Estupina-Borrell V, Dartus D, Ababou R (2006) Flash flooding modelling with Marine hydrological distributed model. Hydrol Earth Syst Sci Disc 3, 3397–3438

    Google Scholar 

  • Fonteh M, Boukong A, Tankou C (1998) Soil and water management of dry season green Paes pisium sativum, production in the Western highlands of Cameroon. Technical Report, University of Dchang

    Google Scholar 

  • Gilbert J-C, Lemaréchal C (1989) Some numerical experiments with variable-storage quasi-newton algorithms. Math Program Ser B (45), 407–435

    Google Scholar 

  • Hascoët L, Pascual V (2004) Tapenade 2.1 User’s guide. Technical report .RT-0300. INRIA

    Google Scholar 

  • Honnorat M, Monnier J, Lai F-X, Le Dimet F (2006), Variational data assimilation for 2D fluvial hydraulics simulation CMWR XVI-computational methods for water resources. Copenhagen, June 2006

    Google Scholar 

  • Lauvernet C (2005) Assimilation variationelle des observations de télédétection dans les modèles de fonctionnement de la véegétation: utilization du modèle adjoint en et prise en compte des contraintes spatiales. Ph.D. Thesis. University of Grenoble

    Google Scholar 

  • Le Dimet F-X, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observation. Tellus 38A, 97–110

    Article  Google Scholar 

  • Le Dimet F, Navon IM, Daescu DN (2002) Second-order information in data assimilation. Mon Wea Rev 130(3), 629–648

    Article  Google Scholar 

  • Le Dimet F-X, Ngnepieba P, Hussaini MY, Furbish D (2004). Errors and uncertainties for geophysical Fluids. Technical Report, SCRI, Florida State University.

    Google Scholar 

  • Lions J (1968) Optimal control of systems governed by partial differential equations. Springer-Verlag, Berlin

    Google Scholar 

  • Liu DC, Nocedal J (1989) On the limited BFGS method for large scale optimization. Math Program 45, 503–528

    Article  Google Scholar 

  • Mahfouf J (1991) Analysis of soil moisture from near-surface parameters: A feasibility study. J Appl Meteorol 30(11), 1534–1547

    Article  Google Scholar 

  • Margulis S, Entekhabi D (2001) A coupled land surface-boundary layer model and its adjoint. J Hydrometeorol 2(3), 274–296

    Article  Google Scholar 

  • Mazauric C (2003) Assimilation de données pour les modèles d’hydraulique fluviale. Estimation de paramètres, analyse de sensibilité et décomposition de domaine. PhD thesis, University Joseph Fourier

    Google Scholar 

  • Ngnepieba P, Le Dimet F-X, Boukong A, Nguetseng G (2002) Inverse problem formulation for parameters determination using the adjoint method. ARIMA (1) 1, 127–157

    Google Scholar 

  • Piasecki M, Katopodes N (1997) Control of contaminant releases in rivers and estuaries. Part I: Adjoint sensitivity analysis. J Hydraulic Eng, ASCE 123(6), 486–492

    Article  Google Scholar 

  • Reichle R, Entekhabi D, McLaughlin D (2001) Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Wat Resour Res 37(9), 2353–2364.

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Phys 1, 318–333

    Article  Google Scholar 

  • Sanders B, Katopodes N (2000) Adjoint sensitivity analysis for shallow-water wave control. J Eng Mech 126(9), 909–919

    Article  Google Scholar 

  • Sandu A, Daescu D, Carmichael DR (2003) Direct and adjoint sensitivity analysis of chemical kenetics systems with KPP: I -Theory and software tools. Atmos Environ 37, 5083–5096

    Article  Google Scholar 

  • Seo D, Koren V, Cajina N (2003) Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting. J Hydrometeorol 4(3), 627–641

    Article  Google Scholar 

  • Sirkes Z, Tziperman E (1997) Finite difference of adjoint or adjoint of finite Difference. Monthly Weather Review, 125, 3373–3378

    Article  Google Scholar 

  • Sun N, Yeh W (1990) Coupled inverse problems in groundwater modeling 1. Sensitivity and parameter identification. Wat Resour Res 26(10), 2507–2525

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-Posed problems, Wiley, New York

    Google Scholar 

  • White LW, Vieux BE, Armand D (2002) Surface flow model: Inverse problems and predictions. J Adv Wat Resour 25(3), 317–324

    Article  Google Scholar 

  • White L, Vieux B, Armand D, Le Dimet F (2003) Estimation of optimal parameters for a surface hydrology model. Adv Wat Resour 26(3), 337–348

    Article  Google Scholar 

  • Wu L (2005) Variational methods applied to plant functional-structural dynamics: parameter identification, control and data assimilation. D. Thesis. University of Grenoble

    Google Scholar 

  • Yang J, LeDimet F (1998) Variational data assimilation in the transport of sediment in river. Sci China, Ser D: Earth Sci 41(5), 483–485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Le Dimet, FX., Castaings, W., Ngnepieba, P., Vieux, B. (2009). Data Assimilation in Hydrology: Variational Approach. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71056-1_20

Download citation

Publish with us

Policies and ethics